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Foreword

After Galileo, mathematics became the language of physics. After Max-
well, all laws of electricity, magnetism and light have been united in a
synthesis around the electromagnetic field. This field is a function of space
and time with value into a vector space containing the six parameters of
the field. Maxwell laws are not invariant under the group of transformations
that rules mechanics. From the invariance of the velocity of light, Einstein
obtained his Relativity, which replaces the group of spacial rotations by a
greater group, the Lorentz group, acting on space and time. The electroma-
gnetic field becomes a tensor field. The next major change in physics was
the discovery by Einstein and de Broglie of the quantum world. Einstein got
the quantification of light, and de Broglie generalized the quantum wave to
the movement of any material particle. Unhappily the first wave equation
obtained by Schrödinger was not relativistic. Despite immense new results
obtained in the quantum domain, quantum physics still suffers from this
restricted starting point.

The true wave equation for the electron was obtained immediately after
by Dirac. This wave equation is relativistic and moreover it gives the spin
1/2 property of the electron. It is the starting point of the present work.
Three points show the novelty of this approach: The mass term of the Dirac
equation is replaced by a slightly different mass term, and this is enough to
solve the problem of unphysical negative energy. The true frame allowing
us to describe the Dirac wave is the Clifford algebra of the 3-dimensional
space. This frame must replace the old frame of quantum physics, based
on the complex field that is only the even part of the Clifford algebra of a
plane, a 2-D software instead of the 3-D space algebra. The third and main
novelty is the replacement of the Lorentz group by a greater group linked
to the 3-D geometry.

v
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vi The standard model of quantum physics in Clifford Algebra

Forty years after the beginning of the quantum odyssey, the Dirac theory
was revisited by Hestenes and a few researchers. I was one of them. We
used the Clifford algebra of the space-time. The Dirac wave is a function
of space-time with value into the even part of the Clifford algebra. And
this part is isomorphic to the Clifford algebra of space. This explains why
the authors are able to put the Dirac theory in their 3-D frame. Since a
combination of specific linear solutions is generally not a right solution in
physical atoms, a non linear Dirac equation was obtained which led to more
consistent results, such as a scale factor appearing in the form invariance.
A much greater diversity of tensors is available in the Clifford frame.

The authors study next the consequences of the greater invariance
group. It rules all electromagnetic laws. The space-time frame allows us to
extend the wave to include both the electron and its neutrino. This allows
us to include the gauge group U(1) × SU(2) of electro-weak interactions.
Space-time algebra is enough to include leptons and anti-leptons. When
all associations of right and left waves were explored, it appeared that the
gauge invariance is compatible with a mass term that was not known in the
Weinberg–Salam model.

The same method to go from the electron to the electron + neutrino
pair is next used again to get a wave including the electron, its neutrino,
and quarks u and d of the first generation with their three color states.
The wave accounts for all particles of the first generation and also for their
antiparticles. A wave equation with a mass term is obtained, both form
invariant under the greater geometric group and gauge invariant under the
U(1)×SU(2)×SU(3) gauge group of the standard model. This invariance is
not approximate but exact, and this is also a complete novelty in quantum
physics. The method used to get the extended wave is equivalent to adding
two dimensions to the space-time. The quantum wave is then a function
of space and time with value into the full Clifford algebra Cl1,5 of this
extended space-time.

Since this approach is compatible with a mass term it is interesting
to study the possibility of reconciling the quantum world with inertia and
gravitation. A first attempt is made here.

One of the main consequences of the greater invariance is a double
link between the wave and its Lagrangian formalism. Fermat was the first
to understand that light moves in a way that minimizes the duration of
its propagation. Next all laws of mechanics were understood as governed
by such a principle of minimum. The de Broglie wave was obtained by
uniting these two principles of minimum. Today all quantum mechanics is
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Foreword vii

issued from such a mechanism, a Lagrangian density linked to the quantum
wave. Calculus of variations allows us to get the wave equation from this
Lagrangian density. The novelty is that when the wave equation is read
in an invariant form, in Clifford algebra, the Lagrangian density is exactly
the real scalar part of the wave equation. This is true for the electron in
the space algebra, true for the pair electron+neutrino in the space-time
algebra, and true again for the extended wave electron+neutrino+quarks
in the Clifford algebra of the extended space-time.

This approach also explains why there are three generations and four
kinds of neutrinos, the last one experiencing only gravitational interactions.
It reinforces the standard model that today describes the quantum world.
No insight beyond the standard model, no new particles with exotic pro-
perties are awaited. The only new possibilities are the magnetic monopoles.
They are fully compatible with classical electromagnetism and quantum
physics. Actually their existence is yet proved and this book reports the
first experiments on these fermionic monopoles.

Roger Boudet,
Université de Provence,

Av. de Servian,
Bassan,
France.
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Introduction

To see where the standard model that today rules quantum physics
comes from we first return to its beginning. When the idea of a wave
associated to the movement of a particle was born, Louis de Broglie was
following the consequences of the construction by A. Einstein of his theory
of relativity [29]. The first wave equation found by Schrödinger [56] was
not relativistic, and could not be the true wave equation. At the same
time the spin of the electron was discovered. This remains the main change
from pre-quantum physics, since the spin 1/2 has no classical equivalent.
Pauli gave a wave equation for a non-relativistic equation with spin. This
equation was the starting point of the attempt made by Dirac [34] to get a
relativistic wave equation for the electron. The Dirac equation was a very
great success. Until now, it is still considered as the wave equation for each
particle with spin 1/2, electrons and also positrons, muons and anti-muons,
neutrinos and quarks.

This wave equation was intensively studied by Louis de Broglie and his
students. He published a first book in 1934 [30] explaining how this equa-
tion gives in the case of the hydrogen atom the quantification of energy
levels, all awaited quantum numbers, the true number of quantum states,
the true energy levels and the Landé factors. The main novelty in physics
coming with the Dirac theory is the fact that the wave does not have vec-
tor or tensor properties under a Lorentz rotation. The wave is a spinor
and transforms very differently. It results from this transformation that
the Dirac equation is form invariant under Lorentz rotations. This form
invariance is the starting point of our study. It is the central thread of this
book.

The Dirac equation was built from the Pauli equation. It is based on
4 × 4 complex matrices, which were constructed from the Pauli matrices.

1
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2 The standard model of quantum physics in Clifford Algebra

Many years after this first construction, D. Hestenes [39] used the Clifford
algebra of space-time to get a different form of the same wave equation.
Tensors which are constructed from the Dirac spinors appear differently
and the relations between these tensors are more easily obtained.

One of the parameters of the Dirac wave, the Yvon–Takabayasi an-
gle [58], was completely different from all classical physics. G. Lochak
understood that this angle allows a second gauge invariance and he found
a wave equation for a magnetic monopole from this second gauge invari-
ance [46]. He showed that a wave equation with a nonlinear mass term was
possible for his magnetic monopole. When this mass term is null, the wave
is made of two independent Weyl spinors.

This mass term is compatible with the electric gauge ruling the Dirac
equation. So it can replace the linear term of the Dirac equation of the
electron [7]. A nonlinear wave equation for the electron was awaited by de
Broglie, because it was necessary to link the particle to the wave. But this
does not explain how to choose the nonlinearity. And the nonlinearity is
a formidable problem in quantum physics: quantum mechanics is a linear
theory. It is by solving the linear wave equation that the quantification of
energy levels and quantum numbers are obtained in the hydrogen atom. If
you start from a nonlinear wave equation, you will not usually be able to
even get quantification and quantum numbers.

Nevertheless the study of this nonlinear wave equation began in the
case where the Dirac equation is its linear approximation. In this case the
wave equation is homogeneous. It is obtained from a Lagrangian density
which differs from the Lagrangian of the linear theory only by the mass
term. Therefore many results are similar. For instance the dynamics of the
electron are the same, and the electron follows the Lorentz force.

Two formalisms were available, the Dirac formalism with 4× 4 complex
matrices, and the real Clifford algebra of space-time. A matrix representa-
tion links these formalisms. Since the hydrogen case gave the main result,
a first attempt was made to solve the nonlinear equation in this case. Heinz
Krüger gave a precious tool [44] by finding a way to separate the spherical
coordinates. Moreover the beginning of this resolution by separation of
variables was the same in the case of the linear Dirac equation and in the
case of the nonlinear homogeneous equation. But then there was a great dif-
ficulty: The Yvon–Takabayasi angle is null in the x3 = 0 plane. This angle
is a complicated function of an angular variable and of the radial variable.
Moreover for any solution with a variable radial polynomial, circles exist
where the Yvon–Takabayasi angle is not defined. In the vicinity of these
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Introduction 3

circles this angle is not small and the solutions of the Dirac equation have
no reason to be linear approximations of solutions of the nonlinear homoge-
neous equation. Finally it was possible to compute [8] another orthonormal
set of solutions of the Dirac equation, which have everywhere a well defined
and small Yvon–Takabayasi angle. These solutions are linear approxima-
tions of the solutions of the nonlinear equation. The existence of this set
of orthonormalized solutions is a powerful argument for our nonlinear wave
equation.

When you have two formalisms for the same theory the question nec-
essarily comes: which is the best one? Comparing the advantages of these
formalisms, the possibility of a third formalism which could be the true
one arose. A third formalism is really available [10] to read the Dirac the-
ory: it is the Clifford algebra Cl3 of the 3-dimensional space used by W.E.
Baylis [2]. This Clifford algebra is isomorphic, as real algebra, to the com-
plex matrix algebra generated by Pauli matrices. Quantum physics knew
this formalism very early, since these Pauli matrices were invented to get
the first wave equation with spin 1/2. Until now this formalism is also
used to get the form invariance of the Dirac equation. Having then three
formalisms for the same theory, the question was, once more: which is the
true one?

The best choice was necessarily coming from the Lorentz invariance of
the wave equation. Therefore a complete study, from the start, of this form
invariance of the Dirac theory was made [12]. This problem was a classical
one, treated by many books, but always with mathematical flaws. The rea-
son is that two different Lie groups may have the same Lie algebra. The Lie
algebra of a Lie group is the algebra generated by infinitesimal operators of
the Lie group. Quantum mechanics uses only these infinitesimal operators
and it is then very difficult to avoid ambiguities. But it is possible to avoid
any infinitesimal operator. And working without them it is then easy to
see the main novelty coming from quantum physics: the fundamental in-
variance group is greater than expected. This group is the 8-dimensional
Lie group Cl∗3 of the invertible elements in Cl3.

This is a major change in our understanding of physical laws. It is the
direct generalization of the Einstein’s point of view: rules applying to all
physical laws are the same in any domain. All physical laws, in gravitation,
electromagnetism, weak or strong interactions, have the same kind of invari-
ance. Physical consequences are similar to those arising from the replace-
ment of the Galileo group by the Lorentz group: fewer invariant quantities,
grouping of other ones, new concepts. Among these new concepts we can
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4 The standard model of quantum physics in Clifford Algebra

cite the numeric dimension and the existence of two space-time manifolds:
the relative one is 4-dimensional and the other one is 6-dimensional. Both
manifolds have the same and unique dimension of time. The physical space
and the physical time are both oriented and the invariance group conserves
both orientations.

In several articles and in three previous books [15] [16] [23] several con-
sequences of this larger invariance group were presented. This invariance
group governs not only the Dirac theory, but also all electromagnetic laws,
with or without magnetic monopoles, with or without photons. Moreover
this form invariance is also the rule for electro-weak and strong interac-
tions [17]. The form invariance will also be the key that allows us to get
inertia.

Because it is impossible to read this book without knowledge of the Cl3
algebra the first chapter presents Clifford algebras at an elementary level.

Chapter 2 reviews the Dirac equation, first with Dirac matrices, where
we get a mathematically correct form of the relativistic invariance of the
theory. Since the beginning of relativistic quantum mechanics this necessi-
tates the use of the space algebra Cl3. Next we explain the form of the Dirac
equation in this simple frame and we review the relativistic form invariance
of the Dirac wave. We explain with the tensors without derivative that
the classical matrix formalism is deficient and must no longer be used. We
review plane waves. We present the invariant form of the wave equation.
Its scalar part is the Lagrangian density, this is another true novelty with
many consequences. Finally we present the charge conjugation of quantum
field theory in this frame.

Chapter 3 introduces our homogeneous nonlinear equation and explains
why this equation is better than the Dirac equation which is its linear ap-
proximation. We review its two gauge invariances. We explain why plane
waves have only positive energy. The form of the spinor wave and the form
of its relativistic invariance introduce the dilation generated by the wave
from an intrinsic space-time manifold onto the usual relative space-time
manifold, the main geometric novelty of quantum physics. The link be-
tween the wave of the particle and the wave of the antiparticle coming from
relativistic quantum mechanics gives a charge conjugation where only the
differential term of the wave equation changes sign. This makes the CPT
theorem trivial and it is also a powerful argument for the simplified mass
term. We get the quantization of the energy in the case of the hydrogen
atom and all results of the linear theory with this homogeneous nonlinear
wave equation.
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Introduction 5

Chapter 4 presents the invariance of electromagnetic laws under Cl∗3, the
group of the invertible elements in Cl3, for the Maxwell–de Broglie electro-
magnetism with massive photons. This allows the definition of a numeric
dimension for each physical quantity, allowing us to discriminate easily
covariance, invariance, contra-variance and half-variance. Next we study
electromagnetism with magnetic monopoles. We explain how the photon
of de Broglie may be obtained with real components by an antisymmetric
product of spinors.

Chapter 5 presents several consequences of these novelties. The
anisotropy of the intrinsic space-time explains why we see muons and tauons
as well as electrons, their similarities and their differences. The intrinsic
manifold has a torsion whose components were calculated for plane waves.
The mass term is linked to this torsion. Next we present the building of the
de Broglie’s wave of a system of electrons as a wave in ordinary space-time,
and not in a configuration space where space and time do not have the
same status, with value onto the space algebra. We present as a counter-
example a wave equation without Lagrangian formalism and we solve this
wave equation in the hydrogen case. We present in our frame the three
other photons of Lochak’s theory.

Chapter 6 is devoted to our main progress since [16]. We start from
the covariant derivative of the electro-weak gauge theory in the frame of
the space-time algebra, first for the lepton case, electron+neutrino. We
get both the form invariance under Cl∗3 and the gauge invariance under the
gauge group of electro-weak interactions. We extend to the lepton wave the
geometric transformation linked to the wave in the case of a lone electron.
We get an identity allowing the existence of an inverse and of a wave equa-
tion with mass term for electron+neutrino. Similarly to the case of the lone
electron, the real scalar part is simply L = 0 where L is the Lagrangian
density giving the whole wave equation by the variational calculus. The
wave equation gives both the homogeneous non-linear equation studied in
chapter 3 and the electro-weak gauge invariance previously studied. It is
well-known that the standard model has great difficulty with the mass of
the electron: the mass term of the Dirac equation links left wave to right
wave. In the electro-weak interaction these left and right waves act differ-
ently. Therefore the standard model first cancels the mass of the electron
then puts it back with a very complicated mechanism of spontaneously
broken symmetry. We get here a wave equation with a mass term, both
form invariant (and consequently relativistic invariant) and gauge invariant
under the U(1)×SU(2) gauge group of electro-weak interactions. All these

16 septembre 2015 12:31 The Standard model of Quantum Physics-9780 livre_CD_JB page v



6 The standard model of quantum physics in Clifford Algebra

results could not have been obtained from the linear Dirac equation. A
double link exists between the wave equation and the Lagrangian density;
this generalizes to the electron + neutrino case the double link that we pre-
viously saw in the electron case. Only one other numeric equation is simple
amongst the 14 ones: the law of conservation of the current. This one is
the sum of the current of the electron and the current of the neutrino.

Chapter 7 uses the Cl1,5 Clifford algebra to extend the gauge to strong
interactions. Even though our aim is the same as in [17], we use here a
different Clifford algebra, because we need the link between the wave of the
particle and the wave of the antiparticle that is used in the standard model
of electro-weak and strong interactions. We get exactly the U(1)×SU(2)×
SU(3) gauge group in this frame. In addition to the standard model we
understand the reason of the insensitivity of leptons to strong interactions.
We extend to the Cl1,5 frame the form invariance of the gauge interactions.
This induces the use of a complex 6-dimensional space-time into which the
usual 4-dimensional space-time is well separated from two supplementary
dimensions. Next the nullity of right waves of the neutrino and of quarks
induces another remarkable identity. It implies that the full wave of the
lepton and the three colored quarks has an invertible value. This identity
allows a wave equation with a mass term, which is both form invariant and
gauge invariant. The wave equation has a mass term generalizing the mass
term of the electron+neutrino case, with a proper mass for the leptonic part
and a proper mass for the quark part of the complete wave. The double
link between the wave equation and the Lagrangian density explains why
a Lagrangian formalism is always present in the standard model of the
quantum theory. The wave equation is form invariant under the Cl∗3 group
generalizing the relativistic invariance. It is also gauge invariant under
precisely the U(1)× SU(2)× SU(3) gauge group of the standard model.

The geometric transformation that the wave defines at each point
of the space-time is generalized when we extend the wave to the elec-
tron+neutrino+quarks case. The transformation is still affine but the or-
thogonality is lost. The equality between Cl1,5 and Cl5,1 mixes the vector
and the pseudo-vector parts of the Clifford algebra.

Chapter 8 is devoted to magnetic monopoles. We explain Russian ex-
periments and our French experiments. We make their results more precise,
particularly the wavelength. We apply our study of electro-weak interac-
tions to the case of the magnetic monopole.

Chapter 9 presents how we can get the inertial phenomena from the
wave equations previously obtained, making the form invariance of the wave
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equation local. Inertial frames are not only those in which there are no
additional forces, they are also those in which the double link between the
wave equation and Lagrangian density exists. Next we link the existence
of the density of probability to the principle of equivalence of inertial and
gravitational mass. The normalization of the wave inducing a symmetrical
momentum-energy tensor, gravitation is then ruled by the Einstein–Ricci
curvature tensor.

Chapter 10 presents our conclusions about the major change explained
here in our way of seeing the standard model of our physical universe and
its insertion into a theory of all interactions.

For the works at E.C.N., thanks to Didier Priem for his efficiency, his
inventiveness and his kindness, and thanks to Guillaume Racineux who
constantly supported us.
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Chapter 1

Clifford algebras

This chapter presents what a Clifford algebra is, then we study the

algebra of an Euclidean plane and the algebra of 3-dimensional physical

space which is also the algebra of the Pauli matrices. We put the space-

time and the relativistic invariance there. Then we present the space-

time algebra and the Dirac matrices. We finally present the Clifford

algebra of a 6-dimensional space-time, needed by the electro-weak and

strong interactions.

It is quite usual in a physics book to put the mathematics into appen-
dices even if they are necessary to understand the main part of the book.
As it is impossible to understand the part containing physics without the
Clifford algebras, we make here again a complete presentation1 of this nec-
essary tool. Why is this mathematical tool necessary? The physics of light
and quantum physics use waves, therefore they use trigonometric functions,
then also the exponential function, then necessarily products. The addi-
tion of vectors is not enough, a multiplication must be used. Then we
must consider two operations, addition and multiplication of vectors. The
mathematical tool of Clifford algebra is ready to be used in this case.

We shall only speak here about Clifford algebras on the real field. Alge-
bras on the complex field also exist and we could expect complex algebras
to be key point for quantum physics. The main algebra used here is also an
algebra on the complex field, but it is its structure of real algebra 2 which
is useful.

1. Readers already in the know may do a quick review. On the contrary a complete
lecture is strongly advised for each reader who really wants to understand the physics
contained in the following chapters.

2. A Clifford algebra on the real field has components of vectors which are real num-
bers and which cannot be multiplied by i. A Clifford algebra on the complex field has
components of vectors which are complex numbers and which can be multiplied by i.

9
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10 The standard model of quantum physics in Clifford Algebra

Our aim is not to say everything about any Clifford algebra but simply
to give to our lecturer tools to understand the next chapters of this book.

Another very interesting introduction to the subject is the book by
Doran and Lasenby [35]. We could have suppressed this chapter if their
book was not too devoted to space-time algebra, whilst we use here three
Clifford algebras.

1.1 What is a Clifford algebra?

1 – It is an algebra [5] [15]. There are two operations, denoted A + B

and AB, such that for any A, B, C:

A+ (B + C) = (A+B) + C ; A+B = B +A

A+ 0 = A ; A+ (−A) = 0 (1.1)

A(B + C) = AB +AC ; (A+B)C = AC +BC ; A(BC) = (AB)C.

2 – The algebra contains a set of vectors, denoted with arrows, in which a
scalar product exists and the internal Clifford multiplication �u�v is supposed
to satisfy for any vector �u :

�u�u = �u · �u. (1.2)

where 3 �u · �v is the usual notation for the scalar product of two vectors.
This implies, since �u · �u is a real number, that the algebra contains vectors
but also real numbers.

3 – Real numbers commute with any member of the algebra: if a is a
real number and if A is any element in the algebra:

aA = Aa, (1.3)

1A = A. (1.4)

Such an algebra exists for all finite-dimensional linear spaces which are
the ones that we need in physics.

The smaller one is unique, to within an isomorphism.
Remark 1: Equation (1.1) and Eq. (1.4) imply that the algebra is itself

a linear space, not to be confused with the first one. If the initial linear
space is n-dimensional, we get a Clifford algebra which is 2n-dimensional.
We shall see for instance in Sec. 1.3 that the Clifford algebra of the 3-
dimensional physical space is an 8-dimensional linear space on the real
field. We do not need to distinguish between the left or right linear space

3. This equality seems strange, but gives nice properties. We need these properties
in the following chapters.
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here, since real numbers commute with each element of the algebra. We
also do not need to consider multiplication by a real number as a third
operation, because it is a particular case of the multiplication.

Remark 2: If �u and �v are two orthogonal vectors, (�u·�v = 0), the equality
(�u+�v)·(�u+�v) = (�u+�v)(�u+�v) implies �u·�u+�u·�v+�v·�u+�v·�v = �u�u+�u�v+�v�u+�v�v,
so we get :

0 = �u�v + �v�u ; �v�u = −�u�v. (1.5)

Main change to usual rules on numbers, multiplication is not commuta-
tive: we must be as careful as with matrix calculations.

Remark 3: Addition is defined in the whole algebra, which contains
numbers and vectors. So we will get sums of numbers and vectors: 3 + 5�i

is authorized. It is perhaps strange or disturbing, but it is not different
from 3 + 5i. And everyone using complex numbers finally gets used to it.

Even sub-algebra: It’s the sub-algebra generated by the products of
an even number of vectors: �u�v, �e1�e2�e3�e4 and so on. The even sub-algebra
built on an n-dimensional vector space is 2n−1-dimensional.

Reversion: The reversion A �→ Ã changes the order of products. Re-
version does not change numbers a nor vectors: ã = a, �̃u = �u, and we get,
for any �u and �v, A and B:

�̃u�v = �v�u ; ÃB = B̃Ã ; Ã+B = Ã+ B̃. (1.6)

1.2 Clifford algebra Cl2 of a Euclidean plane

Cl2 contains the real numbers and the vectors of a Euclidean plane,
which read �u = x�e1 + y�e2, where �e1 and �e2 form a direct orthonormal basis
of the plane: �e1 2 = �e2

2 = 1, �e1 · �e2 = 0. Usually we set: �e1�e2 = i. The
general element of the algebra is :

A = a+ x�e1 + y�e2 + ib, (1.7)

where a, x, y and b are real numbers. This is enough because:

�e1i = �e1(�e1�e2) = (�e1�e1)�e2 = 1�e2 = �e2,

�e2i = −�e1 ; i�e2 = �e1 ; i�e1 = −�e2,
i2 = ii = i(�e1�e2) = (i�e1)�e2 = −�e2�e2 = −1. (1.8)

Two remarks must be made:
1 – The even sub-algebra Cl+2 is the set formed by all a + ib, so it is

the complex field. We may say that complex numbers are underlying as
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soon as the dimension of the linear space is greater than one. This even
sub-algebra is commutative.

2 – The reversion is here the usual conjugation: ĩ = �̃e1�e2 = �e2�e1 = −i.
We get then, for any �u and any �v in the plane: �u�v = �u · �v + i det(�u,�v).

To establish that (�u ·�v)2+[det(�u,�v)]2 = �u 2�v 2, it is possible to use �u�v�v�u
which can be calculated in two ways, and we can use �v�v which is a real
number and commutes with anything in the algebra.

1.3 Clifford algebra Cl3 of the physical space

Cl3 contains [2] the real numbers and the vectors of the physical space
which read: �u = x�e1 + y�e2 + z�e3, where x, y and z are real numbers, and
�e1, �e2 and �e3 form an orthonormal basis:

�e1 · �e2 = �e2 · �e3 = �e3 · �e1 = 0 ; �e1
2 = �e2

2 = �e3
2 = 1. (1.9)

We let:

i1 = �e2�e3 ; i2 = �e3�e1 ; i3 = �e1�e2 ; i = �e1�e2�e3. (1.10)

Then we get:

i21 = i22 = i23 = i2 = −1, (1.11)

i�u = �ui ; i�ej = ij , j = 1, 2, 3. (1.12)

To derive Eq. (1.11) we can use the same method we used to get
Eq. (1.8). To derive Eq. (1.12) we may firstly use the fact that i com-
mutes with each �ej.

The general element of Cl3 reads: A = a + �u + i�v + ib. This gives
1 + 3 + 3 + 1 = 8 = 23 dimensions for Cl3.

Several remarks:
1 – The center ofCl3 is the set of a+ib, the only elements which commute

with every other one in the algebra. It is isomorphic to the complex field.
2 – The even sub-algebra Cl+3 is the set of a + i�v, isomorphic to the

quaternion field. Therefore quaternions are implicitly present in calcula-
tions as soon as the dimension of the linear space is greater than or equal
to three. This even sub-algebra is not commutative.

3 – Ã = a+ �u− i�v − ib ; The reversion is the conjugation, for complex
numbers but also for the quaternions contained in Cl3.

4 – i�v is what is usually called "axial vector" or "pseudo-vector", whilst
�u is usually called vector. It is well known that it is specific to dimension
3.
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5 – There are now four different terms with square −1, four ways to get
complex numbers. Quantum theory is used to only one term with square
−1. When complex numbers are used in quantum mechanics, it will then be
necessary to ask the question of which i is used: i = σ1σ2σ3 or i3 = σ1σ2?

1.3.1 Cross-product, orientation

We use �u×�v to denote the cross-product of �u and �v. Using coordinates
in the basis (�e1, �e2, �e3), we can easily establish for any �u and �v:

�u�v = �u · �v + i �u× �v, (1.13)

(�u · �v)2 + (�u× �v)2 = �u 2�v 2. (1.14)

We use det(�u,�v, �w) to denote the determinant whose columns contain the
components of vectors �u, �v, �w, in the basis (�e1, �e2, �e3). Again using coordi-
nates, it is possible to establish, for any �u, �v, �w:

�u · (�v × �w) = det(�u,�v, �w), (1.15)

�u× (�v × �w) = (�w · �u)�v − (�u · �v)�w, (1.16)

�u�v �w = i det(�u,�v, �w) + (�v · �w)�u− (�w · �u)�v + (�u · �v)�w. (1.17)

From Eq. (1.15) it follows that �u × �v is orthogonal to �u and �v. Equation
(1.14) allows us to calculate the length of �u × �v, and Eq. (1.15) gives its
orientation. We recall that a basis (�u,�v, �w) is said to be direct, or to have
the same orientation as (�e1, �e2, �e3) if det(�u,�v, �w) > 0, and to be inverse, or
to have other orientation if det(�u,�v, �w) < 0. Equation (1.17) allows us to
establish that, if B = (�u,�v, �w) is any orthonormal basis, then �u�v �w = i if
and only if B is direct, and �u�v �w = −i if and only if B is inverse. So i is
strictly linked to the orientation of the physical space. To change i to −i is
equivalent to changing the space orientation (it is the same for a plan). The
fact that i rules the orientation of the physical space will play an important
role in the next chapters.

1.3.2 Pauli algebra

The Pauli algebra, introduced in physics as early as 1926 to account
for the spin of the electron, is the algebra of 2 × 2 complex matrices. It
is identical (isomorphic) to Cl3, but only as algebras on the real 4 field.

4. The dimension of the Pauli algebra is 8 on the real field, but only 4 on the complex
field.
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Identifying complex numbers to scalar matrices and the ej to the Pauli
matrices σj is 5 enough. So, z being any complex number, we have

z =

(
z 0

0 z

)
, (1.18)

�e1 = σ1 =

(
0 1

1 0

)
; �e2 = σ2 =

(
0 −i
i 0

)
; �e3 = σ3 =

(
1 0

0 −1

)
. (1.19)

This is fully compatible with all preceding calculations, because:

σ1σ2σ3 =

(
i 0

0 i

)
= i, (1.20)

σ1σ2 = iσ3 ; σ2σ3 = iσ1 ; σ3σ1 = iσ2. (1.21)

And then the reverse is identical to the adjoint matrix:

Ã = A† = (A∗)t. (1.22)

Consequently we shall equally name Cl3 “Pauli algebra” or “space algebra”.
This is not appreciated by a few users of Clifford algebras who have not
understood the power of isomorphisms.

1.3.3 Three conjugations are used

A = a+�u+i�v+ib is the sum of the even partA1 = a+i�v (quaternion) and
the odd part A2 = �u + ib. From this we define the conjugation (involutive
automorphism) A �→ Â as

Â = A1 −A2 = a− �u+ i�v − ib. (1.23)

This conjugation satisfies, for any element A and any B in Cl3:

Â+B = Â+ B̂ ; ÂB = ÂB̂. (1.24)

It is the main automorphism of this algebra, and each Clifford algebra has
such an automorphism. From this conjugation and from the reversion we
form the third conjugation:

A = Â† = a− �u− i�v + ib : A+B = A+B ; AB = B A. (1.25)

Composing, in any order, two of these three conjugations gives the third
one. Only A �→ Â preserves the order of products; A �→ A and A �→ A†

5. This identifying process may be considered a lack of rigor, but in fact it is frequent
in mathematics. The same process allows us to include integer numbers into relative
numbers, or real numbers into complex numbers. To go without this process implies
very complicated notations. This identifying process considers the three σj as forming
a direct basis of the physical space.
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invert the order of products. Now a, b, c, d are any complex numbers and

a∗ is the complex conjugate of a. We can prove 6 that for any A =

(
a b

c d

)
:

Ã = A† =
(
a∗ c∗

b∗ d∗

)
; Â =

(
d∗ −c∗
−b∗ a∗

)
; A =

(
d −b
−c a

)
, (1.26)

AA = AA = det(A) = ad− bc ; ÂA† = A†Â = [det(A)]∗,

i† = −i ; î = −i ; i = i, (1.27)

σ†
j = σj ; σ̂j = −σj ; σj = −σj .

1.3.4 Gradient, divergence and curl

In Cl3 there exists one important differential operator, because all other
operators may be made with it:

�∂ = �e1∂1 + �e2∂2 + �e3∂3 =

(
∂3 ∂1 − i∂2,

∂1 + i∂2 −∂3

)
, (1.28)

with 7

�x = x1�e1 + x2�e2 + x3�e3 ; ∂j =
∂

∂xj
. (1.29)

The Laplacian is simply the square of �∂:

Δ = (∂1)
2 + (∂2)

2 + (∂3)
2 = �∂�∂. (1.30)

Applied to a scalar a, �∂ gives 8 the gradient; and applied to a vector �u it
gives both the divergence and the curl, also called rotational:

�∂a = grad(a), (1.31)
�∂�u = �∂ · �u+ i �∂ × �u ; �∂ · �u = div(�u) ; �∂ × �u = rot (�u). (1.32)

6. The equality AA = AA is general in Cl3. The equality AA = det(A) uses the
identification between numbers and scalar matrices, or equivalently the inclusion of real
numbers into the algebra.

7. This operator �∂ is usually noted in quantum mechanics as a scalar product, for
instance �σ · �∇. From this useless scalar product many convoluted complications result.
Simple notations fully simplify calculations.

8. We use here the notations grad, div and rot that are probably unusual for most
of our lecturers, for two reasons: first these notations were in Louis de Broglie’s books.
Next we shall use the ∇ = σμ∂μ symbol in the space-time algebra.
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1.3.5 Space-time in space algebra

With

x0 = ct ; �x = x1�e1 + x2�e2 + x3�e3 ; ∂μ =
∂

∂xμ
, (1.33)

we let [2] [53]

x = x0 + �x =

(
x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)
. (1.34)

Then the space-time is made of the auto-adjoint part of the Pauli algebra

x̂ = x = x0 − �x ; x† = x, (1.35)

det(x) = xx̂ = x · x = (x0)2 − �x 2 = (x0)2 − (x1)2 − (x2)2 − (x3)2. (1.36)

The square of the pseudo-norm of any space-time vector 9 is then simply the
determinant. Any element M of the Pauli algebra is the sum of a space-time
vector v and of the product with i of another space-time vector w:

M = v + iw, (1.37)

v =
1

2
(M +M †) ; v† = v, (1.38)

iw =
1

2
(M −M †) ; w† = w. (1.39)

Space-time vectors v and w are uniquely defined. We need two linked
differential operators:

∇ = ∂0 − �∂ = σμ∂μ,

∇̂ = ∂0 + �∂ ; σ0 = σ0 = 1 ; σj = −σj , j = 1, 2, 3. (1.40)

They allow us to calculate the D’Alembertian:

∇∇̂ = ∇̂∇ = (∂0)
2 − (∂1)

2 − (∂2)
2 − (∂3)

2 = � (1.41)

1.3.6 Relativistic invariance
If M is any nonzero element in Cl3 and if R is the transformation from

the space-time into itself, which to any x associates x′ such that

x′ = x′0 + �x ′ = R(x) =MxM †, (1.42)

we note, if det(M) �= 0:

det(M) = reiθ , r = | det(M)|. (1.43)
9. We must notice that the pseudo-norm of the space-time metric comes not from a

scalar product, a symmetric bilinear form, but from a determinant, an antisymmetric
bilinear form. We are here very far from Riemannian spaces.
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We get then:

(x′0)2 − (x′1)2 − (x′2)2 − (x′3)2 = det(x′) = det(MxM †)

= reiθ det(x)re−iθ = r2[(x0)2 − (x1)2 − (x2)2 − (x3)2]. (1.44)

Then R multiplies by r any space-time distance and is called “Lorentz di-
lation with ratio r”. If we let, with the usual convention summing the up
and down indices:

x′μ = Rμ
νx

ν , (1.45)

we get for M =

(
a b

c d

)
�= 0:

2R0
0 = |a|2 + |b|2 + |c|2 + |d|2 > 0. (1.46)

x′0 has then the same sign as x0 at the origin: R conserves the arrow of
time. Furthermore we get (the calculation is in [13] A.2.4):

det(Rμ
ν ) = r4. (1.47)

R conserves therefore the orientation of space-time and as it conserves the
time orientation it conserves also the space orientation.

Let f be the application which associates R to M . Let M ′ be another
matrix, with:

det(M ′) = r′eiθ
′
; R′ = f(M ′) ; x′′ =M ′x′M ′†. (1.48)

We get

x′′ =M ′x′M ′† =M ′(MxM †)M ′† = (M ′M)x(M ′M)†,

R′ ◦R = f(M ′) ◦ f(M) = f(M ′M). (1.49)

f is then a homomorphism. If we restrictM to r �= 0, f is a homomorphism
from the group (Cl∗3 ,×) into the group (D∗, ◦), where D∗ is the set of
dilations with nonzero ratio. These two groups are Lie groups. (Cl∗3 ,×)

is an 8-dimensional Lie group, because Cl3 is 8-dimensional. On the other
(D∗, ◦) is only a 7-dimensional Lie group; one dimension is lost because the
kernel of f is not reduced to the neutral element: let θ be any real number
and let M be

M = ei
θ
2 =

(
ei

θ
2 0

0 ei
θ
2

)
; det(M) = eiθ, (1.50)

we then get:

x′ =MxM † = ei
θ
2 xe−i θ2 = x. (1.51)
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f(M) is therefore the identity and M belongs to the kernel of f , which is
a group with only one parameter θ, and we get only 7 parameters in D∗:
6 angles defining a Lorentz rotation, plus the ratio of the dilation. For
instance, if

M = ea+bσ1 = ea[cosh(b) + sinh(b)σ1], (1.52)

then the R transformation defined in Eq. (1.42) satisfies

x′ =MxM † =ea+bσ1(x0 + x1σ1 + x2σ2 + x3σ3)e
a+bσ1

=e2a[e2bσ1(x0 + x1σ1) + x2σ2 + x3σ3]. (1.53)

We then get

x′0 + x′1σ1 = e2a
(
cosh(2b) + sinh(2b)σ1

)
(x0 + x1σ1),

x′0 = e2a
(
cosh(2b)x0 + sinh(2b)x1

)
, (1.54)

x′1 = e2a
(
sinh(2b)x0 + cosh(2b)x1

)
, (1.55)

x′2 = e2ax2, (1.56)

x′3 = e2ax3. (1.57)

We can recognize R as the product of a Lorentz boost with velocity v =

c tanh(2b) mixing the temporal component x0 and the spacial component
x1 and of a homothety with ratio e2a. Now if

M = ea+biσ1 = ea[cos(b) + sin(b)iσ1], (1.58)

then the R transformation defined in Eq. (1.42) satisfies

x′ =MxM † = ea+biσ1 (x0 + x1σ1 + x2σ2 + x3σ3)e
a−biσ1

= e2a[x0 + x1σ1 + e2biσ1 (x2σ2 + x3σ3)]. (1.59)

We then get

x′2σ2 + x′3σ3 = e2a
(
cos(2b) + sin(2b)iσ1

)
(x2σ2 + x3σ3),

x′0 = e2ax0, (1.60)

x′1 = e2ax1, (1.61)

x′2 = e2a
(
cos(2b)x2 + sin(2b)x3

)
, (1.62)

x′3 = e2a
(− sin(2b)x2 + cos(2b)x3

)
. (1.63)

We can recognize R as the product of a rotation with axis Ox1 and angle
2b and a homothety with ratio e2a.
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1.3.7 Restricted Lorentz group

If we impose now the condition det(M) = 1, the set of M is called
SL(2,C), and Eq. (1.44) becomes:

(x′0)2 − (x′1)2 − (x′2)2 − (x′3)2 = (x0)2 − (x1)2 − (x2)2 − (x3)2. (1.64)

R is then a Lorentz rotation and the set of the R is the Lorentz restricted
group L↑

+ (conserving space and time orientation). With Eq. (1.50) we get:

1 = eiθ ; θ = k2π ;
θ

2
= kπ ; M = ±1. (1.65)

Remark 1: Quantum mechanics never distinguishes M from R, it con-
fuses SL(2,C) and L↑

+ and names “bi-valued representations of L↑
+” the

representations of SL(2,C). This comes mainly from the use in quantum
theory of infinitesimal rotations, so they work only in the vicinity of the
origin of the group, then they work not in the group but in the Lie algebra
of the group. And it happens that the Lie algebras of SL(2,C) and of L↑

+

are identical. SL(2,C) is the covering group of L↑
+. Globally SL(2,C) and

L↑
+ are quite different, for instance any element reads eA in L↑

+ and this is
false in SL(2,C). It is therefore intolerable to have neglected for so long
the fact that when an angle b is present in M , it is an angle 2b which is
present in R.

Remark 2: We are forced to distinguish the group of the M from the
group of the R, as soon as θ is not null, because these two groups do not
have the same dimension and are not similar even in the vicinity of the
origin.

Remark 3: SL(2,C) contains as a subgroup the SU(2) group of the
unitary 2 × 2 complex matrices with determinant 1. The restriction of f
to this subgroup is a homomorphism from SU(2) into the SO(3) group of
rotations. The kernel of this homomorphism is also ±1.

Remark 4: There are two non-equivalent homomorphisms from (Cl∗3 ,×)

into the group (D∗, ◦). The second homomorphism f̂ is defined by

x′ = R̂(x) = M̂xM ; R̂ = f̂(M). (1.66)

1.4 Clifford algebra Cl1,3 of the space-time

Cl1,3 contains real numbers and space-time vectors x,

x = x0γ0 + x1γ1 + x2γ2 + x3γ3 = xμγμ. (1.67)
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The four γμ form an orthonormal basis 10 of space-time:

(γ0)
2 = 1 ; (γ1)

2 = (γ2)
2 = (γ3)

2 = −1 ; γμ · γν = 0 , μ �= ν. (1.68)

The general term in Cl1,3 is a sum:

N = s+ v + b + pv + ps, (1.69)

where s is a real number, v is a space-time vector, b is a bivector, pv is a
pseudo-vector and ps is a pseudo-scalar. There are 1+4+6+4+1 = 16 =

24 dimensions on the real field because there are 6 independent bivectors
γ01 = γ0γ1, γ02, γ03, γ12, γ23, γ31, and γji = −γij , j �= i and 4 independent
pseudo-vectors γ012, γ023, γ031, γ123 and one pseudoscalar

ps = pγ0123 ; γ0123 = γ0γ1γ2γ3, (1.70)

where p is a real number.
The even part of N is s + b + ps, the odd part is v + pv. The main

automorphism is N �→ N̂ = s− v + b− pv + ps.
The reverse of N is

Ñ = s+ v − b − pv + ps. (1.71)

Amongst the 16 generators of Cl1,3, 10 have square −1 and 6 have square
1:

12 = γ01
2 = γ02

2 = γ03
2 = γ0

2 = γ123
2 = 1,

γ1
2 = γ2

2 = γ3
2 = γ12

2 = γ23
2 = γ31

2

= γ012
2 = γ023

2 = γ031
2 = γ0123

2 = −1. (1.72)

Remark 1: If we use the + sign for the space, then we get 10 generators
with square 1 and 6 with square −1. The two Clifford algebras are not
identical. And yet there was until this work no known physical reason to
prefer one to the other algebra.

Remark 2: The even sub-algebra Cl1,3+, formed by all the even elements
N = s+ b+ps, is 8-dimensional and is isomorphic to Cl3. We shall see this
in the next subsection by using the Dirac matrices.

The privileged differential operator, in Cl1,3, is:

∂∂∂ = γμ∂μ ; γ0 = γ0 ; γj = −γj , j = 1, 2, 3. (1.73)

It satisfies:

∂∂∂∂∂∂ = � = (∂0)
2 − (∂1)

2 − (∂2)
2 − (∂3)

2. (1.74)
10. Users of Clifford algebras are nearly equally divided between users of a + sign for

the time (Hestenes [39] [41]), and users of a − sign for the time (Deheuvels [33]). It
seems that no physical property of space-time shows a preference for one to the other.
We use here a + sign for the time which was Hestenes’s choice and it is the better choice
to include 4-dimensional space-time into the 6-dimensional space-time of chapter 7.
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1.4.1 Dirac matrices

Most physicists do not use directly the Clifford algebra of space-time
but they use 11 a matrix algebra, generated by the Dirac matrices. These
matrices are not uniquely defined. The best way 12 to link Cl1,3 to Cl3 is
to let:

γ0 = γ0 =

(
0 I

I 0

)
; I =

(
1 0

0 1

)
; γj = −γj =

(
0 −σj
σj 0

)
. (1.75)

Then we get:

∂∂∂ = γμ∂μ =

(
0 ∇
∇̂ 0

)
. (1.76)

It is easy to satisfy:

γ0j =

(−σj 0

0 σj

)
; γ23 =

(−iσ1 0

0 −iσ1

)
; γ0123 =

(
iI 0

0 −iI
)
. (1.77)

Isomorphism between Cl1,3
+ and Cl3: Let N be any even element.

With:

N = a+Bi+ ps ; Bi = u1γ10 + u2γ20 + u3γ30 + v1γ32 + v2γ13 + v3γ21,

ps = bγ0123, (1.78)

M = a+ �u+ i�v + ib ; �u = u1σ1 + u2σ2 + u3σ3,

�v = v1σ1 + v2σ2 + v3σ3, (1.79)

Bi is a bivector and ps a pseudo-scalar in space-time. We get, with the
choice made in Eq. (1.75) for the Dirac matrices:

N =

(
M 0

0 M̂

)
; Ñ =

(
M 0

0 M †

)
. (1.80)

Since the conjugation M �→ M̂ is compatible with the addition and the
multiplication, the algebra of the M is exactly isomorphic to the algebra of
the N . As N contains both M and M̂ , the Dirac matrices combine both
inequivalent representations of Cl∗3 .

11. Generally the matrix algebra used is M4(C), an algebra on the complex field.
This algebra is 16-dimensional on the complex field and therefore it is also an algebra
on the real field. It is 32-dimensional on the real field. This is enough to prove that
M4(C) �= Cl1,3.

12. This choice of the Dirac matrices is not the choice used in the Dirac theory to
calculate the solutions in the hydrogen atom case, but the choice used when high veloc-
ities and restricted relativity are required. It is also the usual choice in the electro-weak
theory. We shall see that it is also a convenient choice to solve the wave equation for the
hydrogen case.
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1.5 Clifford Algebra Cl1,5

We shall use also the Clifford algebra of a larger space-time with a 5-
dimensional space later in chapter 7. The general element x of this larger
space-time reads

x = xaLa = xμLμ + x4L4 + x5L5, (1.81)

xaLa =

n=5∑
n=0

xnLn ; xμLμ =

n=3∑
n=0

xnLn, (1.82)

(x)2 = (x0)2 − (x1)2 − (x2)2 − (x3)2 − (x4)2 − (x5)2. (1.83)

We link the preceding Cl1,3 space-time algebra to this greater algebra by
using the following matrix representation, μ = 0, 1, 2, 3:

Lμ =

(
0 γμ
γμ 0

)
; L4 =

(
0 −I4
I4 0

)
; L5 =

(
0 i

i 0

)
, (1.84)

where I4 is the identity matrix for 4 × 4 matrices and i = γ0123 (See
Eq. (1.77)). We always use the matrix representation Eq. (1.75). We get

Lμν = LμLν =

(
γμν 0

0 γμν

)
, (1.85)

Lμνρ = LμνLρ =

(
0 γμνρ

γμνρ 0

)
, (1.86)

L0123 = L01L23 =

(
γ0123 0

0 γ0123

)
=

(
i 0

0 i

)
, (1.87)

L45 = L4L5 =

(−i 0

0 i

)
, (1.88)

L012345 = L0123L45 =

(
I4 0

0 −I4

)
. (1.89)

The general term of this algebra reads

Ψ = Ψ0 +Ψ1 +Ψ2 +Ψ3 +Ψ4 +Ψ5 +Ψ6 ; Ψ0 = sI8, s ∈ R, (1.90)

Ψ1 =
a=5∑
a=0

NaLa, Ψ2 =
∑

0�a<b�5

NabLab, Ψ3 =
∑

0�a<b<c�5

NabcLabc,

Ψ4 =
∑

0�a<b<c<d�5

NabcdLabcd, Ψ5 =
∑

0�a<b<c<d<e�5

NabcdeLabcde, (1.91)

Ψ6 = pL012345, p ∈ R, (1.92)
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where N ind are real numbers. We shall need in chapter 6:

P+ =
1

2
(I8 + L012345) =

(
I4 0

0 0

)
,

P− =
1

2
(I8 − L012345) =

(
0 0

0 I4

)
. (1.93)

Now we consider six elements of this algebra:

Λa = LaL012345 ; a = 0, 1, 2, 3, 4, 5. (1.94)

We then get

Λμ =

(
0 −γμ
γμ 0

)
; Λ4 =

(
0 I4
I4 0

)
; Λ5 =

(
0 −i

i 0

)
, (1.95)

Lab = −Λab, 0 � a � b � 5, (1.96)

Labcd = Λabcd, 0 � a < b < c < d � 5, (1.97)

L012345 = −Λ012345 =

(
I4 0

0 −I4

)
, (1.98)

La = Λ012345Λa. (1.99)

These six Λa are the generators of the L5,1 algebra since (1.96) implies

(Λ0)
2 = −1; (Λa)

2 = 1, a = 1, 2, 3, 4, 5, (1.100)

and the algebra generated by the Λa is a sub-algebra of the algebra gener-
ated by the La. Conversely Eq. (1.99) implies that we could start with the
Λa and get the La from them. This explains how Cl5,1 = Cl1,5. Vectors in
Cl1,5 are pseudo-vectors in Cl5,1 and vice-versa and n-vectors in Cl1,5 are
(6-n)-vectors in Cl5,1. Then the sums of vectors and pseudo-vectors that
we shall need in chapter 7 are independent of the choice of the signature.
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Chapter 2

Dirac equation

We present here in two different frames the Dirac wave equation

for the electron. It is usually studied with the Dirac matrices. The

relativistic invariance nevertheless requires us to use the space algebra,

into which we rewrite all the Dirac theory. We get new tensors. We

study the link between the invariant form of the Dirac equation and the

Lagrangian density. We review the charge conjugation.

2.1 With the Dirac matrices

An important part of the standard model of quantum physics is the
Dirac wave equation. This comes from the fact that electrons, neutrinos and
quarks, are quantum objects with spin 1/2. The standard model explains
the spin 1/2 as a relativistic consequence of the Dirac wave equation. This
equation is intensively studied in this chapter and slightly modified in the
following chapter. The modified equation shall be generalized in chapter 6
as a wave equation for a pair electron+neutrino. Next this equation shall
also be generalized as a wave equation for all particles and antiparticles of
the first generation.

The starting point of Dirac’s work was the Pauli wave equation for the
electron, which used a wave with two complex components mixed by Pauli
matrices. The Schrödinger and Pauli wave equations include a first order
time derivative, and second order derivatives for the space coordinates. This
is inappropriate for a relativistic wave equation. So Dirac sought a wave
equation with only first order derivatives, giving at the second order the
equation for material waves. This necessitated the use of matrices as Pauli
had done. Dirac [34] understood that more components were necessary. His
wave equation proves that four components are enough. With the matrices

25
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in Eq. (1.75) this equation 1 reads

0 = [γμ(∂μ + iqAμ) + im]ψ ; q =
e

�c
; m =

m0c

�
, (2.1)

with the usual convention summing up and down indices. The Aμ are
components of the space-time vector which is the exterior electromagnetic
potential, e is the charge of the electron and m0 is its proper mass. Even
with a well defined signature for the space-time, the matrices of the theory
are not uniquely defined. The choice we made in Eq. (1.75) allows us to
use the Weyl spinors ξ and η which play a fundamental role, firstly for the
relativistic invariance of the theory and secondly for the Lochak’s theory
for a magnetic monopole [48] or the electro-weak interactions in chapter 6.
With them the wave ψ is the column-matrix:

ψ =

(
ξ

η

)
; ξ =

(
ξ1
ξ2

)
; η =

(
η1
η2

)
. (2.2)

The Dirac equation like the Schrödinger equation is a linear wave equation:
it contains only partial derivatives and products by matrices, so linear com-
binations of solutions are also solutions of the wave equation.

The starting point of G. Lochak’s monopole theory [48] is the existence
in the case of a null proper mass of a double gauge invariance. This is
possible because γ0123 anti-commutes with each of the four γμ matrices. He
established that the Dirac equation could be invariant under this double
gauge invariance if the mass term was replaced by a non linear mass term.
And his gauge may be local if an adequate potential term is added:

[γμ(∂μ − ig

�c
Bμγ5) +

1

2

m(ρ2)c

�
(Ω1 − iΩ2γ5)]ψ = 0, (2.3)

where g is the charge of the monopole and the Bμ are the pseudo-potentials
of Cabibbo and Ferrari. We will use later this mass term in a particular
case.

1. First works about the Dirac equation [30] [34] use an imaginary temporal variable
which allows us to use a ++++ signature for space-time and avoids distinguishing co-
variant and contravariant indices. This brings also difficulties: the tensor components
are either real or pure imaginary. It also hides the fact that matrices of the relativis-
tic theory cannot be all hermitian. The algebra on the complex field generated by the
Dirac matrices is the M4(C) algebra which is 16-dimensional on the complex field and
32-dimensional on the real field. Therefore this algebra cannot be isomorphic to the
Clifford algebra of space-time, 16-dimensional on the real field, even if we have used in
1.4.1 a sub-algebra of M4(C) to represent Cl1,3 and to link Cl1,3 to Cl3.
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2.1.1 Relativistic invariance

With the notations and results of paragraph 1.3.6 the transformation
R defined by Eq. (1.42) is a Lorentz dilation. With the N matrix and its
reverse Ñ in Eq. (1.80) we get with the R in Eq. (1.42) and Eq. (1.45), for
any M and ν = 0, 1, 2, 3 (a proof is in [13] A.2.2 ):

Rν
μγ

μ = ÑγνN. (2.4)

We get also

∂′ν =
∂

∂x′ν
; ∂μ = Rν

μ∂
′
ν ; Aμ = Rν

μA
′
ν , (2.5)

and so we get:

0 = [γμ(∂μ + iqAμ) + im]ψ

= [γμRν
μ(∂

′
ν + iqA′

ν) + im]ψ

= [ÑγνN(∂′ν + iqA′
ν) + im]ψ.

If we restrict M to SL(2,C), we get MM = det(M) = 1, so M = M−1

and Ñ = N−1 which allows us to write

[ÑγνN(∂′ν + iqA′
ν) + im]ψ = N−1[γν(∂′ν + iqA′

ν) + im]Nψ. (2.6)

So the Dirac theory supposes:

ψ′ = Nψ, (2.7)

and it gets

0 = [γμ(∂μ + iqAμ) + im]ψ = N−1[γμ(∂′μ + iqA′
μ) + im]ψ′. (2.8)

This is why the Dirac equation is said to be form invariant under the Lorentz
group. We must remark:

1 – Only transformations of the restricted Lorentz group L↑
+ are ob-

tained.
2 – The same γμ matrices appear in the two systems of coordinates, the

xμ system and the x′μ system. Dirac matrices are independent of the used
system; they do not depend on the moving observer seeing the wave. This
is very important for the extension of the theory to general relativity and
it is quite different from Hestenes’ study [41] where the γμ form a variable
basis of space-time and change from one observer to another.

3 – ξ and η change differently:

ψ′ =
(
ξ′

η′

)
=

(
M 0

0 M̂

)(
ξ

η

)
; ξ′ =Mξ ; η′ = M̂η. (2.9)
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Left and right Weyl spinors are linked to each one of the two non-equivalent
representations of SL(2,C).

4 – Only one factor M or M̂ appears in these last relations, whilst two
M factors are present in x′ =MxM †. In case of a rotation the wave turns
therefore only by θ when we rotate by 2θ.

5 – It is somewhat incorrect to say that the Dirac equation is relativistic
invariant, while the equation is in fact form invariant under another group,
SL(2,C), which is not isomorphic to the Lorentz group.

Nevertheless for any relativistic object with a Dirac wave it is not pos-
sible to avoid the SL(2,C) group, therefore it is impossible to avoid the
algebra Cl3 which contains this group. Now we shall explain how we are
actually able to write the entire Dirac theory in the Cl3 frame.

2.2 The wave with the space algebra

Since the Clifford algebra of the physical space is the Pauli algebra, we
start again from Eq. (2.1) using the Weyl spinors ξ and η. With:

�A = A1σ1 +A2σ2 +A3σ3 ; A = A0 + �A, (2.10)

and with Eq. (1.75) the Dirac equation reads(
0 ∇+ iqA

∇̂+ iqÂ 0

)(
ξ

η

)
+ im

(
ξ

η

)
= 0. (2.11)

This gives the following system, equivalent to the Dirac equation:

(∇+ iqA)η + imξ = 0, (2.12)

(∇̂+ iqÂ)ξ + imη = 0. (2.13)

We take the complex conjugate of Eq. (2.13), then we multiply on the left
by 2−iσ2:

(−iσ2)(∇̂∗ − iqÂ∗)ξ∗ − im(−iσ2)η∗ = 0. (2.14)

But we have:

(−iσ2)(∇̂∗ − iqÂ∗) = (∇− iqA)(−iσ2). (2.15)
2. Whichever formalism is used to read the Dirac wave equation we can see that the

third direction is privileged, and we shall explain this further. The 12 or 21 planes are
also privileged, but indices 1 and 2 play the same role. When a i is added, it is the case
with the electric interaction and the electric gauge invariance, then indices 1 and 2 do
not play the same role because σ1 is real while σ2 is pure imaginary. Therefore the use
of σ2 here is necessary.
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So Eq. (2.13) is equivalent to:

∇(−iσ2ξ∗) + iqA(iσ2ξ
∗) + im(iσ2η

∗) = 0. (2.16)

The system composed of Eqs. (2.12) (2.13) is consequently equivalent to
one matrix 3 equation:

∇(η − iσ2ξ
∗) + iqA(η iσ2ξ

∗) + im(ξ iσ2η
∗) = 0. (2.17)

Now we let

φ =
√
2(ξ − iσ2η

∗) =
√
2

(
ξ1 −η∗2
ξ2 η∗1

)
. (2.18)

This gives

φ̂ =
√
2(η − iσ2ξ

∗) =
√
2

(
η1 −ξ∗2
η2 ξ∗1

)
, (2.19)

and also

φσ3 =
√
2(ξ iσ2η

∗) ; φ̂σ3 =
√
2(η iσ2ξ

∗). (2.20)

So Eq. (2.17) which is equivalent to the Dirac equation Eq. (2.1) reads

∇φ̂+ iqAφ̂σ3 + imφσ3 = 0, (2.21)

which we shall write with

σ12 = σ1σ2 = iσ3 ; σ21 = σ2σ1 = −iσ3, (2.22)

0 = ∇φ̂+ qAφ̂σ12 +mφσ12,

0 = ∇φ̂σ21 + qAφ̂+mφ. (2.23)

Even if this equation seems very different from the well known form
Eq. (2.1), it is necessary to insist on the fact that this wave equation 4

is strictly the Dirac equation.
3. This is possible because when we compute the product of two matrices we multiply

each column of the right matrix by the left matrix. Terms between brackets in Eq. (2.17)
are the column-matrices that we got separately in Eq. (2.12) and Eq. (2.16)

4. The indistinct i in quantum theory which is the generator of the gauge invariance
is changed here into multiplication on the right by σ12 = i3. This is interesting because
i3 is not the only element with square −1. In space algebra there are four independent
terms with square −1. These terms generate a Lie algebra which is exactly the Lie
algebra of the SU(2)×U(1) Lie group. Hestenes [40] was the first to use this Lie algebra
and to compare with the Lie group of electro-weak theory. We shall see in chapter 6
that the gauge group of the electro-weak theory does not have these generators. Then
the three dimensions of this SU(2) group shall be available in chapter 5 to explain the
existence of the three generations of fundamental fermions.
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2.2.1 Relativistic invariance

Under a dilation R defined by any M matrix satisfying Eq. (1.42) and
Eq. (1.43), we got in Eq. (2.9) ξ′ = Mξ, η′ = M̂η, and these relations are
satisfied not only in the particular case r = 1 and θ = 0. Furthermore, we
get

−iσ2η′∗ = −iσ2M̂∗η∗ =

(
0 −1

1 0

)(
d −c
−b a

)
η∗ =

(
b −a
d −c

)
η∗

=

(
a b

c d

)(
0 −1

1 0

)
η∗ =M(−iσ2η∗). (2.24)

So with

φ′ =
√
2(ξ′ − iσ2η

′∗) =
√
2

(
ξ1

′ −η′2∗
ξ′2 η′1

∗

)
, (2.25)

the formulae in Eq. (2.9) are equivalent to
φ′ =Mφ. (2.26)

This signifies that the link between the Weyl spinors ξ, η and our φ is not
only relativistic invariant, it is also invariant under the greater group Cl∗3
of the invertible elements in Cl3. In addition, with

∇′ = σμ∂′μ ; ∂′μ =
∂

∂x′μ
; σ0 = σ0 = 1 ; σj = −σj , j = 1, 2, 3, (2.27)

we get (see [13] A.2.1), for any M :
∇ =M∇′M̂, (2.28)

and the electric gauge invariance imposes then
qA =Mq′A′M̂, (2.29)

which gives
0 = ∇φ̂σ21 + qAφ̂ +mφ

=M∇′M̂φ̂σ21 + q′MA′M̂φ̂+mφ

=M(∇′φ̂′σ21 + q′A′φ̂′) +mφ. (2.30)
Form invariance under Cl∗3 of the Dirac equation signifies that we have

0 = ∇′φ̂′σ21 + q′A′φ̂′ +m′φ′ ; ∇′φ̂′σ21 + q′A′φ̂′ = −m′φ′,

0 =M(−m′φ′) +mφ = −m′MMφ+mφ

= (−m′reiθ +m)φ. (2.31)
We get then the invariance of the wave equation under the Cl∗3 group if and
only if

m = m′reiθ. (2.32)
Evidently in the case where we restrict to r = 1 and θ = 0 we get m′ = m.
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2.2.2 More tensors

Tensorial densities of the Dirac theory appear very different when the
Pauli algebra is used. We shall see this here only for tensors without deriva-
tives. The 16 tensorial densities previously known are always presented as
the only possible ones, as a result of the 16 dimensions of the algebra 5

generated by the Dirac matrices. But that is completely wrong! (Detailed
calculations are in [15] appendix A). Invariants Ω1 and Ω2 satisfy

det(φ) = Ω1 + iΩ2 = ρeiβ , (2.33)

Ω1 = ψψ ; ψ = ψ†γ0 ; Ω2 = −iψγ5ψ ; γ5 = −iγ0γ1γ2γ3. (2.34)

So ρ is the modulus and the Yvon–Takabayasi angle β is 6 the argument
of the determinant of φ. And φ is invertible if and only if ρ �= 0. The
calculation of components, using ξ and η, gives:

J = Jμσμ = φσ0φ
† ; Jμ = ψγμψ, (2.35)

K = Kμσμ = φσ3φ
† ; Kμ = ψγμγ5ψ. (2.36)

But now we may see immediately that these two space-time vectors which
were known to be orthogonal and have opposite squares are part of a list
(D0, D1, D2, D3) containing four space-time vectors:

D0 = J ; D1 = φσ1φ
† ; D2 = φσ2φ

† ; D3 = K. (2.37)

The components of D1 and D2 are not combinations of the 16 quantities
known by the complex formalism. For a Lorentz dilation R defined by a M
matrix, the four Dμ vectors transform in the same way:

D′
μ = φ′σμφ′

†
= (Mφ)σμ(Mφ)† =Mφσμφ

†M † =MDμM
†. (2.38)

The Dμ behave then as the space-time vectors x. We shall say that they are
contravariant. They are also vectors with the same length. Furthermore,
they are orthogonal and form a mobile basis of space-time:

2Dμ ·Dν = DμD̂ν +DνD̂μ

= φσμφ
†φ̂σ̂νφ+ φσνφ

†φ̂σ̂μφ

= φσμρe
−iβσ̂νφ+ φσνρe

−iβ σ̂μφ

= ρe−iβφ(σμσ̂ν + σν σ̂μ)φ = ρe−iβφ2δμνφ

= 2δμνρe
−iβφφ = 2δμνρe

−iβρeiβ,

Dμ ·Dν = δμνρ
2. (2.39)

5. This incorrect idea is one of many consequences of the confusion between real alge-
bras and complex algebras. The tensorial densities of the Dirac wave are real quantities,
not complex quantities.

6. This explains the
√
2 factor that we put in Eq. (2.18) and Eq. (2.19).
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Of course, as we use the space-time of the restricted relativity, with the
choice of a + sign for the time, we get

δ00 = 1 ; δ11 = δ22 = δ33 = −1 ; δμν = 0 , μ �= ν. (2.40)

Among the ten relations in Eq. (2.39), only three were known and computed
with difficulty by the formalism of Dirac matrices:

J2 = ρ2 ; K2 = −ρ2 ; J ·K = 0 (2.41)

For the Sμν tensor, we let:

S3 = S23σ1 + S31σ2 + S12σ3 + S10iσ1 + S20iσ2 + S30iσ3, (2.42)

Sμν = iψγμγνψ. (2.43)

And we get:

S3 = φσ3φ. (2.44)

We see immediately that S3 is one of four analog terms

Sμ = φσμφ. (2.45)

We have already encountered S0, because:

S0 = φσ0φ = φφ = ρeiβ = det(φ). (2.46)

With the 4Dμ that each have 4 components, S0 which has 2 components
and the 3 Sj that each have 6 components, we get 36 components of tensors
without derivatives, instead of only 16 from 7 the complex formalism.

Under a dilation R defined by a M matrix, the Sμ are transformed into

S′
μ = φ′σμφ

′
=MφσμMφ =Mφσμφ M =MSμM. (2.47)

We get as a particular case:

ρ′eiβ
′
= S′

0 =MS0M =MρeiβM = ρeiβMM = ρeiβreiθ ,

ρ′ = rρ ; β′ = β + θ. (2.48)

The formulae in Eq. (2.47) are completely different from formulae giving the
transformation of two-ranked anti-symmetric tensors: S′ρσ = Rρ

μR
σ
νS

μν .
As Rν

μ is quadratic in M and multiplies each space-time length by r, the
presence of two R factors signifies a multiplication by r2 while Eq. (2.47)

7. Using the linear space of the linear applications from Cl3 into Cl3, which is 64-
dimensional, we can establish [11] that the 64 terms of a particular basis can be split
into 28 = 8 × 7/2 terms forming a basis of the Lie algebra of the O(8) Lie group,
and 36 = 9 × 8/2 terms which gives the 36 components of tensors without derivatives.
The number 36 is not random. The 16 tensorial components previously known are the
invariant ones under the electric gauge.
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is quadratic in M and multiplies the length only by r. We can consider
the two formalisms as equivalent only if we restrict the invariance to the
L↑
+ and SL(2,C) groups, where r2 = r = 1. To consider the invariance

under the greater and consequently more restrictive, Cl∗3 group implies
abandoning the formalism of Dirac matrices! The Pauli algebra is not
only simpler than the algebra of Dirac matrices, it is the only formalism
allowing us to formulate the greater group of invariance. Calculations with
only Dirac matrices and without Clifford algebra are also as dangerous as
calculations of relativistic physics with absolute space and time, without
Lorentz transformations.

2.2.3 Plane waves

We study the simpler case, where the interaction with exterior fields
is negligible. We can then take A = 0. The Dirac equation, in the Pauli
algebra, is reduced to

∇φ̂σ21 +mφ = 0. (2.49)

We consider a plane wave with a phasis ϕ such as:

φ = φ0e
−ϕσ12 ; ϕ = mvμx

μ. (2.50)

We shall use the reduced speed space-time vector:

v = σμvμ, (2.51)

φ0 is a fixed term, which gives

∇φ̂σ21 = σμ∂μ(φ̂0e
−ϕσ12)σ21 = −mvφ̂. (2.52)

Consequently the wave equation Eq. (2.49) is equivalent to

φ = vφ̂. (2.53)

Conjugating, this is equivalent to

φ̂ = v̂φ. (2.54)

Combining now the two preceding equalities, we get

φ = v(v̂φ) = (vv̂)φ = (v · v)φ. (2.55)

So we must have

1 = v · v = v20 − �v 2, (2.56)

v20 = 1 + �v 2 ; v0 = ±
√
1 + �v 2. (2.57)
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with a priori two possibilities for the sign. The minus sign implies a nega-
tive energy for the particle; this was at the beginning a disappointment for
Dirac. It is impossible to suppress these troublesome negative energies. For
instance they are necessary if we want to write any wave as a sum of plane
waves using the Fourier transform. After the discovery of the positron, a
particle with the same mass and a charge opposite to the charge of the
electron, these plane waves with negative energy were associated to the
positron, even though positrons seem to have a proper energy equal to, not
opposite to the energy of the electron.

2.3 The Dirac equation in space-time algebra

Equation (2.21) and its conjugation give:
∇φ̂ = qAφ̂σ21 +mφσ21 ; ∇̂φ = qÂφσ21 +mφ̂σ21. (2.58)

We let now

Ψ =

(
φ 0

0 φ̂

)
; A =

(
0 A

Â 0

)
, (2.59)

and we get

∂Ψ =

(
0 ∇φ̂
∇̂φ 0

)
=

(
0 qAφ̂σ21 +mφσ21

qÂφσ21 +mφ̂σ21 0

)

= q

(
0 A

Â 0

)(
φ 0

0 φ̂

)(
σ21 0

0 σ21

)
+m

(
0 φ

φ̂ 0

)(
σ21 0

0 σ21

)
. (2.60)

Equation (1.75) gives:

γ12 = γ1γ2 =

(
0 σ1

−σ1 0

)(
0 σ2

−σ2 0

)
=

(−σ1σ2 0

0 −σ1σ2

)
=

(
σ21 0

0 σ21

)
,

Ψγ0 =

(
φ 0

0 φ̂

)(
0 I

I 0

)
=

(
0 φ

φ̂ 0

)
, (2.61)

then Eq. (2.60) reads
∂Ψ = qAΨγ12 +mΨγ012, (2.62)

which is the Hestenes’s form of the Dirac equation [41]. But the interpre-
tation of Hestenes considers the four γμ as a basis of space-time, while the
Dirac theory considers them as fixed. Since the relativistic form invariance
of the Dirac wave comes from the implicit use of the Cl3 algebra, we get
with Eq. (1.76), Eq. (2.26) and Eq. (2.59)

Ψ′ =

(
φ′ 0

0 φ̂′

)
=

(
Mφ 0

0 M̂φ̂

)
=

(
M 0

0 M̂

)(
φ 0

0 φ̂

)
= NΨ. (2.63)
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2.4 Invariant Dirac equation

The form invariance of the Dirac theory uses ∇ = M∇′M̂ . Since φ′ =
Mφ implies φ

′
= φ M the factor M on the left side of Eq. (2.30) induces

considering a multiplication by φ on the left side of the wave equation.
When and where ρ �= 0, φ is 8 invertible and if we multiply by φ the Dirac
equation is equivalent to

φ(∇φ̂)σ21 + φqAφ̂+mφφ = 0. (2.64)

Under the Lorentz dilation R defined by an element M in Cl3 by Eq. (1.42)
we get Eq. (2.26), Eq. (2.28) and Eq. (2.29) which imply

φ(∇φ̂)σ21 = φ(M∇′M̂φ̂)σ21 = φ
′
(∇′φ̂′)σ21, (2.65)

φqAφ̂ = φ Mq′A′M̂φ̂ = φ
′
q′A′φ̂′. (2.66)

The two first terms of Eq. (2.64) are then form invariant and the mass term
is also form invariant if we have

mφφ = m′φ
′
φ′ = m′φ MMφ = reiθm′φφ, (2.67)

which is equivalent to Eq. (2.32). This mass term reads

mφφ = mΩ1 + imΩ2. (2.68)

it is then the sum of a scalar and a pseudo-scalar term. The second term
of the invariant Dirac equation Eq. (2.64) has another peculiarity: it is a
space-time vector because it is self-adjoint:

(φqAφ̂)† = φ̂†qA†φ
†
= φqAφ̂. (2.69)

We can then let

φqAφ̂ = V 0 + �V = V μσμ, (2.70)

where V is a space-time vector. Only the first term of Eq. (2.64) is general,
but we can also find its peculiarities with

φ(∇φ̂) = 1

2
[φ(∇φ̂) + (φ∇)φ̂] +

1

2
[φ(∇φ̂)− (φ∇)φ̂], (2.71)

1

2
[φ(∇φ̂) + (φ∇)φ̂] =

1

2
∂μ(φσ

μφ̂) = v = vμσμ, (2.72)

1

2
[φ(∇φ̂)− (φ∇)φ̂] = iw = iwμσμ, (2.73)

8. This condition is not severe: we shall see in Appendix C that the inverse exists
everywhere for each solution of the Dirac equation for the H atom; that is the most
complicated calculation and the best success of the Dirac equation.
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where v and w are two space-time vectors, because v† = v and (iw)† = −iw.
This gives

φ(∇φ̂)σ21 =(v + iw)σ21

=(v0+v1σ1+v
2σ2+v

3σ3+iw
0+w1iσ1+w

2iσ2+w
3iσ3)(−iσ3)

=w3 + v2σ1 − v1σ2 + w0σ3 + i(−v3 + w2σ1 − w1σ2 − v0σ3).

(2.74)

Therefore the Dirac equation is equivalent to the system

0 = w3 + V 0 +mΩ1, (2.75)

0 = v2 + V 1, (2.76)

0 = −v1 + V 2, (2.77)

0 = w0 + V 3, (2.78)

0 = −v3 +mΩ2, (2.79)

0 = w2, (2.80)

0 = −w1, (2.81)

0 = −v0. (2.82)

First the gauge invariance concerns only four of the eight equations, those
containing the V μ. This is a consequence of the fact that classical elec-
tromagnetism is based on the absence of magnetic monopoles, as we will
explain further. Less evident and of great importance in the Dirac theory,
the first equation is exactly L = 0 because (a detailed calculation is in
appendix A.1):

L =
1

2
[(ψγμ(−i∂μ + qAμ)ψ) + (ψγμ(−i∂μ + qAμ)ψ)

†] +mψψ

= w3 + V 0 +mΩ1. (2.83)

It is well known that by varying the L Lagrangian density we get the Dirac
wave equation. Moreover the fact that the Dirac equation is homogeneous
implies that L = 0 when the Dirac equation is satisfied. Here we get the
reciprocal situation, the equation L = 0 is one of the wave equations and
the Lagrangian formalism is a consequence 9 of the wave equation. The

9. Each law of movement, in classical mechanics and in electromagnetism, may be
obtained from a Lagrangian mechanism. We know nowadays that this comes from the
Lagrangian form and from the universality of quantum mechanics. But where does
the Lagrangian form of quantum mechanics come from? Here we see this as totally
determined since the Lagrangian density is the scalar part of the wave equation and
since the Lagrangian formalism implies the wave equation.
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four equations containing the symmetric part v of φ(∇φ̂) are respectively,
for indices 0, 3, 2, 1 and the Dμ of Eq. (2.37) (see A.2.6):

0 = ∇ ·D0, (2.84)

0 = ∇ ·D3 + 2mΩ2, (2.85)

0 = ∇ ·D1 − 2qA ·D2, (2.86)

0 = ∇ ·D2 + 2qA ·D1. (2.87)
Equation (2.84) is the equation of conservation of probability. It is now
exactly one of the eight equations equivalent to the Dirac wave equation.
Equation (2.85) is known as the relation of Uhlenbeck and Laporte. Equa-
tion (2.86) and Eq. (2.87) indicate that the D1 and D2 space-time vectors
are not gauge invariant; the electric gauge transformation induces a rota-
tion in the D1 − D2 plane. In spite of its peculiar aspect the invariant
equation appears as the true wave equation since it is form invariant and
since it has so many interesting aspects.

2.5 Charge conjugation

Many years after the discovery of electrons the positrons were also dis-
covered. The only difference between these particles is the sign of the
charge, negative for the electron, positive for the positron. From the Dirac
equation of a particle Eq. (2.1), quantum theory gets the wave equation of
the antiparticle as follows. The wave of the electron is denoted as ψe and
the wave of the positron is denoted as ψp. We take the complex conjugate
of Eq. (2.1):

0 = [γμ∗(∂μ − iqAμ)− im]ψ∗
e . (2.88)

Since Eq. (1.75) gives γ2γμ∗ = −γμγ2, μ = 0, 1, 2, 3, multiplying Eq. (2.88)
by iγ2 on the left we get

0 = −[γμ(∂μ − iqAμ) + im]iγ2ψ
∗
e . (2.89)

Therefore, up to an arbitrary phase, quantum theory supposes
ψp = iγ2ψ

∗
e , (2.90)

0 = [γμ(∂μ − iqAμ) + im]ψp. (2.91)
Using Eq. (2.2) and indices e for the electron and p for the positron
Eq. (2.90) reads ⎛⎜⎜⎝

ξ1p
ξ2p
η1p
η2p

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

⎞⎟⎟⎠
⎛⎜⎜⎝
ξ∗1e
ξ∗2e
η∗1e
η∗2e

⎞⎟⎟⎠ , (2.92)
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ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e. (2.93)

Now with Eq. (2.38) and indices e for the electron and p for the positron
we get

φ̂e =
√
2

(
η1e −ξ∗2e
η2e ξ∗1e

)
; φ̂p =

√
2

(
η1p −ξ∗2p
η2p ξ∗1p

)
. (2.94)

Then Eq. (2.90), which is equivalent to Eq. (2.93), is also equivalent to

φ̂p = φ̂eσ1, (2.95)

φp = −φeσ1. (2.96)

Charge conjugation is then involutive.
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Chapter 3

The homogeneous nonlinear wave
equation

We discuss the question of negative energies. We prove that with our

wave equation all usual plane waves have a positive energy. We study

the relativistic invariance, which introduces a greater invariance group,

and a second space-time manifold. We discuss the charge conjugation.

We explain how this nonlinear wave equation gets the quantification and

the true results in the case of the H atom.

When Dirac was deriving his wave equation he was hoping to get a
wave equation without the negative energies which came from the relativis-
tic Klein–Gordon equation. But his wave equation also had solutions with
negative energies since two signs are possible in Eq. (2.57). When positrons
were discovered six years later, solutions with negative energy were asso-
ciated to positrons and considered as a splendid success of the new wave
equation. But the creation of an electron-positron pair necessitates an
amount of energy: + 2 × 511 keV. The link between the positron and
negative energy implies an interpretation in another theoretical frame and
is now understood only with the second quantification and a complicated
reasoning.

But it is possible to solve the problem of the non-physical negative
energy with a simple modification to the Dirac equation: We replace the
φφ term in the invariant Dirac equation Eq. (2.64) by the modulus ρ of this
term:

φ(∇φ̂)σ21 + φqAφ̂+mρ = 0. (3.1)

Multiplying by the left by φ
−1

we get with ρ = e−iβφφ the equivalent
equation

∇φ̂σ21 + qAφ̂ +me−iβφ = 0. (3.2)
Equation (3.1) and Eq. (3.2) are the two main forms of the wave equa-
tion that we study in this chapter. We firstly obtained this wave equation

39
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from the wave equation for a magnetic monopole of G. Lochak Eq. (2.3),
suppressing the potential term:

[γμ∂μ +
1

2

m(ρ2)c

�
(Ω1 − iΩ2γ5)]ψ = 0. (3.3)

When we choose

1

2

m(ρ2)c

�
=
im

ρ
,

this equation becomes:

[γμ∂μ + ime−iβγ5 ]ψ = 0. (3.4)

Since the Yvon–Takabayasi β angle is electric gauge invariant, it is perfectly
possible to add an electric potential term this gives [7]:

[γμ(∂μ + iqAμ) + ime−iβγ5 ]ψ = 0. (3.5)

This wave equation is nonlinear, because β depends on the value of ψ. It is
homogeneous, because if we multiply a solution ψ by a fixed real number k,
β does not change, so kψ is also a solution of the equation. Our equation has
many common properties with the Dirac equation. We must immediately
say that, if β is null or negligible ime−iβγ5 ≈ im then Eq. (3.5) has the
Dirac equation as a linear approximation.

To write this equation in the Pauli algebra, we proceed as with the Dirac
equation (

0 ∇+ iqA

∇̂+ iqÂ 0

)(
ξ

η

)
+ im

(
e−iβI 0

0 eiβI

)(
ξ

η

)
= 0. (3.6)

This gives the following system, equivalent to Eq. (3.5):

(∇+ iqA)η + ime−iβξ = 0, (3.7)

(∇̂+ iqÂ)ξ + imeiβη = 0. (3.8)

Using the process explained in Sec. 2.2 the homogeneous nonlinear equation
becomes [9]

∇φ̂+ qAφ̂σ12 +me−iβφσ12 = 0, (3.9)

which is equivalent to Eq. (3.2) or to the invariant equation Eq. (3.1). The
differential term φ(∇φ̂)σ21 and the gauge term φqAφ̂ are those of the linear
wave equation and the only change is in the mass term where φφ = Ω1+iΩ2
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is replaced by ρ =
√
Ω2

1 +Ω2
2. We therefore get instead of Eq. (2.75) to

Eq. (2.82) and with notations of chapter 2 the system:
0 = w3 + V 0 +mρ, (3.10)

0 = v2 + V 1, (3.11)

0 = −v1 + V 2, (3.12)

0 = w0 + V 3, (3.13)

0 = −v3, (3.14)

0 = w2, (3.15)

0 = −w1, (3.16)

0 = −v0. (3.17)
As with the Dirac equation, the scalar equation Eq. (3.10) gives the La-
grangian density:

0 = L =
1

2
[(ψγμ(−i∂μ + qAμ)ψ) + (ψγμ(−i∂μ + qAμ)ψ)

†] +mρ

= w3 + V 0 +mρ. (3.18)
Therefore the double link between wave equation and Lagrangian density
is the same as with the linear wave equation. Similarly Eq. (3.17) is still
the law of conservation of the probability density.

3.1 Gauge invariances

Since the differential term and the gauge term are the same and since
the mass term is gauge invariant, the homogeneous nonlinear wave equation
is also invariant under the electric gauge which reads in the Pauli algebra

φ �→ φ′ = φeiaσ3 ; Aμ �→ Aμ
′ = Aμ − 1

q
∂μa. (3.19)

The conservative current linked to the electric gauge invariance Eq. (3.19)
by Noether’s theorem is here also the probability current J = D0, and
Eq. (3.17) is exactly the conservation law Eq. (2.84).

But the homogeneous nonlinear equation allows a second, global, gauge
invariance:

φ �→ φ′ = eiaφ ; φ �→ φ
′
= eiaφ ; ∂μa = 0, (3.20)

which gives
ρeiβ = φφ �→ ρ′eiβ

′
= φ′φ

′
= e2iaφφ = ρei(β+2a),

ρ �→ ρ′ = ρ ; β �→ β′ = β + 2a. (3.21)
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We shall see in chapter 6 that this second gauge is part of the electro-weak
gauge group. Since Eq. (3.20) is also the chiral 1 gauge coming from the
magnetic monopole of G. Lochak [46] we get his result on the associated
current: Noether’s theorem implies the existence of another conservative
current, K = D3 (see [15] B.1.3), and this replaces the Uhlenbeck and
Laporte relation Eq. (2.85) by the conservative law:

0 = ∇ ·D3. (3.22)

This is, along with the change in the Lagrangian density and the scalar
equation, the only change: the 6 other equations are unchanged. Since the
chiral gauge multiplies φ by eia, φ̂ is multiplied by e−ia, the Weyl spinor ξ
is multiplied by eia and η is multiplied by e−ia [48]. The generator i of the
chiral gauge is exactly the i of the Pauli algebra which rules the orientation
of the physical space (see Sec. 1.3.1). Since we have lost linearity the
sum φ1 + φ2 of two solutions of Eq. (3.1) is not necessarily a solution of
Eq. (3.1). But since the equation is homogeneous and invariant under the
chiral gauge, if φ is a solution and z is any complex number then zφ is also
a solution of Eq. (3.1). This property, true for the Schrödinger equation
and the i of the electric gauge, is not true for the Dirac equation in Cl3.

3.2 Plane waves

We repeat what has been done in Sec. 2.2.3 for the linear equation. Our
equation is now reduced, for A = 0, to:

∇φ̂+me−iβφσ12 = 0. (3.23)

If we consider a plane wave with a phase ϕ satisfying

φ = φ0e
−ϕσ12 ; ϕ = mvμx

μ ; v = σμvμ, (3.24)

where v is a fixed reduced speed and φ0 is also a fixed term, we get:

∇φ̂ = σμ∂μ(φ̂0e
−ϕσ12) = −mvφ̂σ12. (3.25)

Equation (3.23) is then equivalent to

φ = eiβvφ̂, (3.26)

or to

φ̂ = e−iβ v̂φ, (3.27)
1. The electric gauge multiplies ξ and η by the same factor eia while the chiral gauge

multiplies ξ by eia and η by e−ia. This gauge is a local one in Lochak’s theory as well
as in the electro-weak theory.
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which implies

φ = eiβv(e−iβ v̂φ) = vv̂φ = (v · v)φ. (3.28)

So, if φ0 is invertible, we must take

1 = v · v = v20 − �v 2, (3.29)

v20 = 1 + �v 2 ; v0 = ±
√
1 + �v 2, (3.30)

which is the expected relation for the reduced speed of the particle. Fur-
thermore, with the nonlinear equation, we have:

D0 = φφ† = (eiβvφ̂)φ† = eiβv(φ̂φ†) = eiβvρe−iβ = vρ. (3.31)

So we get

D0
0 = ρv0, (3.32)

and since D0
0 and ρ are always positive, Eq. (3.30) is obtained only if

v0 =
√
1 + �v 2. (3.33)

This proves that the replacement of φφ by ρ in the mass term of the in-
variant equation is enough to rid the Dirac theory of unphysical negative
energies in the electron case.

3.3 Relativistic invariance

With a Lorentz dilation R with ratio r = | det(M)| satisfying

x′ = R(x) =MxM † , det(M) = reiθ , φ′ =Mφ

∇ =M∇′M̂ ; qA =Mq′A′M̂, (3.34)

we have also

ρ′eiβ
′
= det(φ′) = φ′φ′ =Mφφ M =MρeiβM

=MMρeiβ = reiθρeiβ = rρei(β+θ), (3.35)

ρ′ = rρ, (3.36)

β′ = β + θ. (3.37)

And so we get:

0 = φ(∇φ̂)σ21 + φqAφ̂+mρ

= φ M∇′M̂φ̂σ21 + φ Mq′A′M̂φ̂+mρ

= φ
′
(∇′φ̂′)σ21 + φ

′
q′A′φ̂′ +mρ. (3.38)
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The homogeneous nonlinear equation is form invariant under Cl∗3 , the group
of invertible elements in Cl3, if and only if

mρ = m′ρ′, (3.39)

mρ = m′rρ. (3.40)

We get then the form invariance of the wave equation under Cl∗3 = GL(2,C)

if 2 and only if

m = m′r. (3.41)

What is the significance of this equality for physics? If the true invariance
group for the electromagnetism is not only the Lorentz group, and not
even its covering group, but the greater group Cl∗3 , similar things to what
happens when we go from Galilean physics to relativistic physics must also
occur: there are fewer invariant quantities. The proper mass m0 and ρ are
both invariant under Lorentz rotations. Under Lorentz dilations induced
by all M matrices, m and ρ are no longer separately invariant; it is the
product mρ alone which is invariant

mρ = m′rρ = m′ρ′. (3.42)

What does the invariance of mρ mean? It is the product of a reduced mass
and a dilation ratio which is invariant. A reduced mass m = m0c/� is
proportional to the inverse of a space-time length, which is a frequency.
This is exactly what E = hν says. Otherwise, the existence of Planck’s
constant is linked to the fact that m and ρ are not separately invariant,
but only their product is. Or again, the existence of Planck’s constant is
linked to the invariance under the Cl∗3 group, greater than the invariance
group of the restricted relativity. Somewhere we can say: the existence
of Planck’s constant was not fully understood from the physical point of
view. To consider this greater invariance group will enable us to see things
otherwise and to understand why there is a Planck constant.

The invariance of the mρ product has also another consequence. If we
restrict the invariance to the subgroup of Lorentz rotations, m is invariant.
Since the product mρ is a constant, this implies that ρ has a physically

2. The simplification that we see here, from Eq. (2.32), is a powerful argument for
the homogeneous nonlinear equation. A factor eiθ in the mass term is not annoying
because mm̂ = |m|2. But it indicates a lack of symmetry, and it explains by itself why
the greater group of invariance Cl∗3 was not previously seen. The form invariance of the
electromagnetism, which we shall study in the next chapter, and the form invariance of
the Dirac theory, are fully compatible only with the homogeneous nonlinear equation
and this transformation of masses.
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determined value. But if we multiply ψ or φ by a real constant k, ρ is mul-
tiplied by k2. To say that ρ has a physically determined value is equivalent
to saying that the wave is normalized, or that, in a way or another, there
is a physical condition which fixes the amplitude of the wave. We shall use
this in chapter 9.

With the wave equation Eq. (3.2) we get the invariance of the wave
equation under Cl∗3 with the condition

m = m′r. (3.43)

We had implicitly considered previously r and ρ on the same footing, this
is natural since ρ′ = rρ. More generally: There is no difference of
structure between the M defining the dilation R and the φ wave,
which are both complex 2 × 2 matrices, elements of the space
algebra Cl3. More precisely φ is a function from space-time with
value into Cl3. Consequently φ, asM , can define a Lorentz dilation
D, with ratio ρ, by:

D : y �→ x = φyφ†. (3.44)

And the components Dν
μ of the four Dμ are just the 16 terms of the matrix

of the dilation because

x = xμσμ = φyνσνφ
† = yνφσνφ

† = yνDν = yνDμ
νσμ; x

μ = Dμ
ν y

ν . (3.45)

There is no difference between the product M ′M which gives the
composition of dilations R′ ◦ R and the product Mφ which gives
the transformation of the wave under a dilation, and this induces
then a composition of dilations R ◦D:

x′ =MxM † =Mφyφ†M † = (Mφ)y(Mφ)† = φ′yφ′†. (3.46)

This signifies that the y introduced into Eq. (3.44) does not change, either
seen by the observer of x or by the observer of x′. It is independent of the
dilation defined by any M .

And since φ is function of x, the D dilation is also a function of x,
and varies from point to point in space-time: y is not an element of the
global space-time, only of the local space-time. So we must see y as the
general element of the tangent space-time, at x, to a space-time manifold
which depends only on the wave, not on the observer, which we will name
intrinsic manifold. On the contrary the dilation depends on the observer:
the observer of x sees D, the one of x′ sees D′ = R ◦D.

At each point of the space-time we have then not one but two space-
time manifolds, and two different affine connections: the manifold
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of the x and x′, for which each relativistic observer is associated to a
Lorentzian tangent space-time, and another manifold, this of the y on which
we will study a few properties. We shall generalize this result in chapter 6.
The wave equations that we shall get for the electron+neutrino pair and
for electron+neutrino+quarks are not a generalization of the linear wave
equation but a generalization of the homogeneous nonlinear equation.

3.4 Charge conjugation

We start again from the usual link between the wave of the particle
and the wave of the antiparticle, Eq. (2.90) in the frame of Dirac matrices
and Eq. (2.95) in the space algebra. The homogeneous nonlinear equation
Eq. (3.2) is

∇φ̂eσ21 + qAφ̂e +me−iβeφe = 0. (3.47)
We also have

ρee
iβe = φeφe. (3.48)

This gives
ρee

iβe = φeφe = φp(−σ1)(φ̂pσ1)† = −φpφp = −ρpeiβp . (3.49)
Therefore Eq. (3.47) reads

∇φ̂pσ1σ21 + qAφ̂pσ1 +m(−e−iβp)(−φpσ1) = 0. (3.50)
Multiplying by σ1 on the right this is equivalent to

−∇φ̂pσ21 + qAφ̂p +me−iβpφp = 0. (3.51)
Now multiplying by φp on the left we get the invariant form of the wave
equation for the positron:

−φp∇φ̂pσ21 + qφpAφ̂p +mρp = 0. (3.52)
This means that only the differential part of the wave equation is changed.
Instead of the system Eq. (3.10) to Eq. (3.17) we get now

0 = −w3 + V 0 +mρ, (3.53)

0 = −v2 + V 1, (3.54)

0 = v1 + V 2, (3.55)

0 = −w0 + V 3, (3.56)

0 = v3, (3.57)

0 = −w2, (3.58)

0 = w1, (3.59)

0 = v0. (3.60)
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So the charge conjugation does not really change the sign of the charge nor
the sign of the mass, only the sign 3 of the differential term of the wave
equation. Only vμ and wμ change sign. Therefore the Lagrangian density
which is the scalar part of the wave equation becomes

L = −1

2
[(ψγμ(−i∂μ − qAμ)ψ) + (ψγμ(−i∂μ − qAμ)ψ)

†] +mρ

= −w3 + V 0 +mρ. (3.61)

The positive mass-energy of the positron is exactly opposite to the nega-
tive energy-coefficient of the stationary 4 state. The homogeneous nonlinear
wave equation solves then the puzzle of the sign of the energy in a much
more understandable way than second quantization: we have the negative
coefficient E necessary to obtain the Fourier transformation, but the true
density of energy is T 0

0 which remains positive.
Since Eq. (3.52) may be formally gotten from Eq. (3.1) by changing xμ

into −xμ which is the PT transformation, the CPT theorem of quantum
field theory is trivial.

Since the Dirac equation is the linear approximation of the homogeneous
nonlinear wave equation, we get the Dirac equation of the positron from
the nonlinear equation by changing the mass term. But we must account
for the fact that βp ≈ π and ρp ≈ −Ω1p. The linear approximation of the
homogeneous nonlinear wave equation is then:

0 = −φp∇φ̂pσ21 + qφpAφ̂p +mρ = −φp∇φ̂pσ21 + qφpAφ̂p −mΩ1p,

(3.62)

0 = −∇φ̂pσ21 + qAφ̂p −mφp. (3.63)

We have, for the sign of E and T 0
0 , the same results as for the nonlinear

equation: E is negative but T 0
0 is positive. There is no longer a problem with

the negative energy. Consequently we do not need the second quantization
to solve the problem.

3. The electric gauge invariance is gotten, in place of Eq. (3.19), as φp �→ φ′p =

φpeiaσ3 and Aμ �→ A′
μ = Aμ− 1

q
(−∂μa) = Aμ− 1

−q
∂μa. Therefore the positron appears

as having a charge opposite to the charge of the electron. In fact it is not q but ∂μa
which changes sign.

4. The study of plane waves in the case of the positron gives in place of Eq. (3.26):
φp = −eiβpvφ̂p, φ̂p = −e−iβp v̂φp, φp = vv̂φp. We now get D0 = −vρp and then
D0

0 = −ρpv0. Therefore we get v0 = −√
1 + �v2: v0 and E are then negative.
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3.5 The Hydrogen atom

Quantum mechanics got quantized energy levels by solving the
Schrödinger equation in the case of the hydrogen atom, an electron “turn-
ing” around a proton. The quantification was a brilliant result, but the
other results were not so good. The energy levels were not accurate, and
the number of states for a principal quantum number n was n2 when 2n2

states were awaited.
We put the detailed calculation in Appendix C, it is very beautiful but

also very difficult. We resume here conclusions. Our study of the solutions
for the homogeneous nonlinear equation proves that a family of solutions
may exist, labeled by the same quantum numbers appearing in the linear
Dirac theory, and that these solutions of the nonlinear equation are very
close to the solutions of the linear equation because the Yvon–Takabayasi
angle is everywhere defined and small. We recall here that the existence
of the Yvon–Takabayasi angle is equivalent to the existence of the inverse.
For these solutions the inverse exists everywhere.
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Chapter 4

Invariance of electromagnetic laws

The group of Lorentz dilations induced by the Cl∗3 group is also

the invariance group of electromagnetic laws. This is established for

the electromagnetism of Maxwell–de Broglie, with photons, and for the

electromagnetism with magnetic monopoles.

The laws of Maxwell’s electromagnetism in the void are not invariant un-
der the invariance group of mechanics. Putting at the center of his thought
the invariance of the speed of light, Einstein replaced, for all physics, the
invariance group of mechanics by a greater group, containing translations
and rotations, but also the Lorentz transformations including space and
time. When an invariance group is replaced by another, greater group,
there are fewer invariants, for instance the mass and the impulse are no
longer invariant; only the proper mass remains invariant. And there is a
grouping of quantities, for instance the electric field and the magnetic field
become parts of the same object, the electromagnetic tensor field. Energy
and impulse become parts of the same impulse–energy vector.

The existence of particles with spin 1/2 shows us that the group of
Lorentz transformations is still too small, and we must use another greater
group, SL(2,C), itself a subgroup of the group GL(2,C) = Cl∗3 made of
the invertible elements of the space algebra. Since Cl3 is naturally linked
to the geometry of the physical space and SL(2,C) is not, this implies that
Cl∗3 is the true invariance group, not only of the Dirac equation, but also of
all physical laws and this is what we will look at now for electromagnetism.

4.1 Maxwell–de Broglie electromagnetism

Louis de Broglie worked out a quantum theory of light [31] [32] where
the wave of the photon is built by fusion of two Dirac spinors. The electric

49
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field �E, the magnetic field �H, the electric potential V , and the potential
vector �A follow Maxwell’s laws in the vacuum, supplemented by mass terms:

−1

c

∂ �H

∂t
= rot( �E) ; div( �H) = 0 ; �H = rot( �A) ;

1

c

∂V

∂t
+ div( �A) = 0

1

c

∂ �E

∂t
= rot( �H) + k20 �A ; div( �E) = −k20V ; �E = −1

c

∂ �A

∂t
− grad(V )

(4.1)
The k0 = m0c/� term contains the proper mass m0 of the photon. That
term is certainly very small, since there has been very little time dispersion
for light emitted millions of years ago. But Louis de Broglie answered those
who think the photon mass exactly null that no physical experiment can
prove a quantity to be exactly, with an infinite accuracy, equal to another
one. To write 1 these Maxwell–de Broglie equations into space algebra, we
let:

x0 = ct ; A0 = V ; A = A0 + �A ; F = �E + i �H. (4.2)

The seven equations Eq. (4.1) group together into only two equations:

F = ∇Â, (4.3)

∇̂F = −k20Â. (4.4)

Because Eq. (4.3) reads:
�E + i �H = (∂0 − �∂)(A0 − �A),

0 + �E + i �H + 0i = (∂0A
0 + �∂ · �A) + (−∂0 �A− �∂A0) + i�∂ × �A+ 0i. (4.5)

This equation is equivalent to the system obtained by separating the scalar,
vector, pseudo-vector and pseudo-scalar parts:

0 =
1

c

∂V

∂t
+ div( �A), (4.6)

�E = −1

c

∂ �A

∂t
− grad(V ), (4.7)

�H = rot( �A). (4.8)

Similarly Eq. (4.4) gives:

(∂0 + �∂)( �E + i �H) = −k20(A0 − �A),

∂0 �E + i∂0 �H + �∂ · �E + i�∂ × �E + i(�∂ · �H + i�∂ × �H) = −k20(A0 − �A), (4.9)
�∂ · �E + ∂0 �E − �∂ × �H + i(∂0 �H + �∂ × �E) + i�∂ · �H = −k20A0 + k20 �A.

1. To read the electromagnetic field as �E + i �H is archaic. We will remark that the i
here is the generator of the chiral gauge, it is not the i of quantum mechanics, generator
of the electric gauge.
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Separating, as previously, the scalar, vector, pseudo-vector and pseudo-
scalar parts, this is equivalent to:

div( �E) = −k20V, (4.10)

1

c

∂ �E

∂t
− rot( �H) = k20 �A, (4.11)

1

c

∂ �H

∂t
+ rot( �E) = �0, (4.12)

div( �H) = 0. (4.13)

These equations reduce to Maxwell equations in the vacuum, plus the
Lorentz gauge condition, if the proper mass of the photon is null. We
get then, in place of Eq. (4.4): ∇̂F = 0.

4.1.1 Invariance under Cl∗3 and numeric dimension

With Maxwell–de Broglie electromagnetism the potential terms V and
�A are not simple tools for calculations, but are parts of physical quantities
of the wave of the photon, as much as �E and �H . How do these quantities
vary under a rotation, vary under a Lorentz dilation with ratio not equal
to 1?

Since Maxwell’s laws of electromagnetism in the vacuum are invariant,
not only under the group of Lorentz transformations, but also under the
conformal group, which contains in addition inversions and dilations, we
will suppose that, under a Lorentz dilation R with ratio r, generated by an
M matrix satisfying Eq. (1.42), the electromagnetic field transforms as:

F ′ =MFM−1. (4.14)

If we write then M as M =
√
rei

θ
2P , where P is an element of SL(2,C),

we have P−1 = P and we get:

F ′ =
√
rei

θ
2PF

1√
r
e−i θ2P = PFP . (4.15)

which is the same transformation as if the dilation was induced only by P ,
that is to say it was a Lorentz transformation. So Eq. (4.14) is such that
the electromagnetic field depends neither on r, nor on θ: the presence of
the Cl∗3 group is as discreet as possible.

Equation (4.14) is form invariant if we have

∇̂′F ′ = −k′02Â′. (4.16)
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We also have:

∇ =M∇′M̂ ; ∇̂ =M †∇̂′M ; ∇̂′ = (M †)−1∇̂M−1. (4.17)

We then get:

−k′02Â′ = ∇̂′F ′ = (M †)−1∇̂M−1MFM−1

= (M †)−1∇̂FM−1 = (M †)−1(−k20Â)M−1. (4.18)

Moreover k0 = rk′0 since m = rm′ is required by the invariance of the
homogeneous nonlinear 2 We then get:

−k′02Â′ = (M †)−1(−r2k′02Â)M−1,

Â′ = (M †)−1re−iθÂreiθM−1

= (M †)−1M †M̂ÂMMM−1

= M̂ÂM, (4.19)

A′ =MAM †. (4.20)

which means that, contrary to qA which transforms as ∇, A transforms as
x and is “contravariant”. Physically potential terms are linked to and move
with sources. How can A be contravariant and qA covariant? This means:

qA =Mq′A′M̂ = q′MMAM †M̂ = q′reiθAre−iθ = q′r2A, (4.21)

that 3 is to say:

q = q′r2. (4.22)

The electric charge, like the proper mass, is a relativistic invariant. The
electric charge, like the mass, is not invariant under the complete group
Cl∗3 , and varies when the ratio of the dilation is not equal to 1.

The transformation Eq. (4.14), and the contra-variance Eq. (4.20) of A
which comes from, are compatible with the law Eq. (4.3) linking the field
to the potentials, because this gives:

F ′ = ∇′Â′, (4.23)

MFM−1 =M(∇Â)M−1 =M(M∇′M̂Â)M−1. (4.24)

2. This is the best indication that the true wave equation for the electron is not the
Dirac linear equation, but the homogeneous nonlinear equation. Electromagnetism and
wave equation of the electron are both Cl∗3 form invariant only with our wave equation.

3. We get used to lowering up indexes and raising down indexes of tensors. To do that
we use the metric, and so we implicitly consider it as invariant. But if the space-time
metric is invariant under the Lorentz group, it is not invariant under the greater group of
dilations, so we no longer have the right to raise or lower indices of tensors. A covariant
vector does not behave as a contravariant vector under a dilation. Therefore we are not
allowed to treat ∇, covariant, as x, contravariant and to compute T (∇) instead of T (x),
a common thing [45] in space-time algebra which we must also avoid.
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But we have, with Eq. (4.20):

Â′ = M̂ÂM ; M̂Â = Â′M
−1
, (4.25)

and Eq. (4.24) gives

MFM−1 =MM∇′Â′M
−1
M−1

= (MM)F ′(MM)−1 = det(M)F ′(det(M))−1 = F ′. (4.26)

A dilation is composed of a Lorentz rotation and a pure homothety with
ratio r > 0. We know that c is invariant under Lorentz rotations. Since a
speed is a ratio distance on time, and since these two terms are multiplied
by the same ratio r of a pure homothety, the ratio distance on time is
invariant. So we may suppose that the invariance of light speed is true not
only under the Lorentz rotations, but also under all dilations induced by an
element of Cl∗3. The other essential invariant of the Dirac theory is the fine
structure constant α, which is a pure number, and so cannot vary under a
dilation, no more than it can under a Lorentz rotation. But we have:

q =
e

�c
; qe =

e2

�c
= α = q′e′ ; qe = q′r2e = q′e′. (4.27)

We get then

e′ = r2e. (4.28)

We have now:

α =
e2

�c
=
e′2

�′c
=
r4e2

�′c
; e2�′c = �cr4e2, (4.29)

which gives:

�′ = r4�. (4.30)

We must then see � as a variable 4 term under a dilation with ratio r �= 1.

m0c

�
= m = rm′ = r

m′
0c

�′
= r

m′
0c

r4�
=
m′

0c

r3�
, (4.31)

gives:

m′
0 = r3m0. (4.32)

This allows us to define:
4. To let � = 1 is then a very bad habit that we must get rid of as soon as possible.
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4.1.2 Numeric dimension

The numeric dimension of any physical quantity is the power of the
ratio dilation r in the formula giving the transformation of this quantity
under the dilation R defined by the element M in Cl3. Equation (1.44) says
that x has numeric dimension 1. Equation (2.7) implies that φ has numeric
dimension 1/2. Equation (2.28) implies that ∇ has numeric dimension −1.
Equation (4.14) implies that the electromagnetic field (and this will be the
same for all other gauge fields) has numeric dimension 0. This is also the
case for any velocity and for the fine structure constant. Equation (4.28)
says that an electric charge (and it is the same for a magnetic charge) has
numeric dimension 2. From Eq. (4.32) a proper mass does not vary as
an electric charge under a Lorentz dilation. An electric charge varies as a
surface; a proper mass has numeric dimension 3 and varies as a volume.
There is a geometrical difference between a mass and a charge. Equation
(4.30) implies that the Planck factor has numeric dimension 4, that is the
numeric dimension of a space-time volume. Next Eq. (3.44) implies that
the numeric dimension of the generic element y of the intrinsic manifold
is 0. This manifold is then a real manifold both in the physical and the
mathematical point of view. With Eq. (2.33), Eq. (2.37) and Eq. (2.45)
we can see that all tensorial densities without derivatives φσμφ† and φσμφ
have the same numeric dimension 1. The interpretation of these quantities
made from the matrix Dirac theory as scalar, vector, bivector and so on, is
then completely out of date.

Since a speed is multiplied by r0, an acceleration is multiplied by r−1:
An acceleration has numeric dimension −1. Therefore a force is multiplied
by r2 and has a numeric dimension 2. This is coherent with the Lorentz
force since the electromagnetic field is multiplied by r0 and the charge by r2.
The probabilistic interpretation of the quantum wave says that the square
of the wave, generalized as J0, is a probability of density. This attributes
to J0 the numeric dimension −3, since a probability is a pure number with
numeric dimension 0. We shall see in chapter 9 that the correct probability
of density is J0/�c which has the true numeric dimension −3 since J0 has
the numeric dimension 1 of x and �c has the numeric dimension 4. It is
completely impossible to get the true physical laws with � = 1 since � is
not a constant under Cl∗3 , that is the invariance group of all physical laws.
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4.2 Electromagnetism with magnetic monopoles

When Maxwell wrote his laws for magnetism, he supposed that magnetic
fields come from magnetic charges, which we now call magnetic monopoles.
Later this was forgotten, because for decades nobody was able to prove
the existence of such monopoles. Finally teachers have presented the laws
to their students as if magnetic monopoles could not exist. Nevertheless
the laws of electromagnetism can easily be modified if magnetic monopoles
exist. On top of the electric charge density ρe and the current density
�j, a density of magnetic charge ρm and a density of magnetic current �k
exist. On top of the electric potential V and of the potential vector �A, a
magnetic potential W and a magnetic potential vector �B exist. The laws
of electromagnetism with monopoles read:

�E = −grad(V )− 1

c

∂ �A

∂t
+ rot( �B) ; �H = rot( �A) + grad(W ) +

1

c

∂ �B

∂t

0 = ∂μA
μ =

1

c

∂V

∂t
+ div( �A) ; 0 = ∂μB

μ =
1

c

∂W

∂t
+ div( �B)

rot( �H)− 1

c

∂ �E

∂t
=

4π

c
�j ; div( �E) = 4πρe

rot( �E) +
1

c

∂ �H

∂t
=

4π

c
�k ; div( �H) = −4πρm. (4.33)

We can see that these equations are equivalent to:

F = ∇(Â+ iB), (4.34)

∇̂F =
4π

c
(ĵ + ik), (4.35)

where we have let:

B =W + �B ; k = ρm + �k. (4.36)

The calculation is identical to that made to establish Eq. (4.3) and Eq. (4.4).
So it is very simple to go from electromagnetism without monopoles to
electromagnetism with monopoles: it is enough to add a pseudo-vector,
made of the magnetic potential and the magnetic potential vector to the
space-time vector made of the electric potential and the potential vector,
and to add a space-time pseudo-vector made of the density of magnetic
charge and the density of magnetic current to the space-time vector made of
the density of charge and density of current. The laws are exactly the same,
and we cannot see why such potentials and current should be prohibited.
Until now quantum physics has not been able to see the magnetic part
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of electromagnetism because no distinction was made between real and
complex quantities: A+ iB was seen as only A with complex components
and it was the same for j + ik.

The form invariance of the law Eq. (4.34) under the Cl∗3 group has
evidently the same consequence for the two potentials, so B must be, as A,
a contravariant vector:

B′ =MBM †. (4.37)

To look at what is implied by Eq. (4.35), we remark that we have:

∇̂ =M †∇̂′M ; F ′M =MF, (4.38)

so we have:

4π

c
(ĵ + ik) = ∇̂F =M †∇̂′MF =M †∇̂′F ′M =M † 4π

c
( ̂j′ + ik′)M,

j + ik =M(j′ + ik′)M̂, (4.39)

j =Mj′M̂ ; k =Mk′M̂, (4.40)

which means that the j and k vectors are covariant, transform as ∇. This
is consistent with electrostatics, because a charge density is the quotient
of a charge e on a volume dv, and because we have, under a dilation with
ratio r:

ρe =
e

dv
; ρ′e =

e′

dv′
=

r2e

r3dv
=
ρe
r

; ρe = rρ′e. (4.41)

We may say consequently that the choice made for the transformation of
the electromagnetic field under a dilation, even if it gives surprising results,
with the variation of the charge, the proper mass and the Planck term, is
consistent with all elementary laws of electricity and magnetism.

4.3 Back to space-time

Until now we mainly used the space algebra, because the relativistic
invariance of the Dirac theory leads inevitably to this algebra and because
the even sub-algebra of the space-time algebra is isomorphic to the space
algebra. Nevertheless we shall see further that electro-weak interactions
need the space-time algebra.
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4.3.1 From Cl3 to Cl1,3

To go from the space-time algebra to the space algebra, all you need is
to use only even 5 terms. To go from the space algebra to the space-time
algebra the easiest way is to use the matrix representation Eq. (1.75). The
wave, denoted φ in space algebra, is denoted Ψ in space-time algebra. We

have gotten in Eq. (2.59) Ψ =

(
φ 0

0 φ̂

)
. N of Eq. (1.80) is similarly an even

element of the space-time algebra and also the electromagnetic field that
we denote F:

F =

(
F 0

0 F̂

)
=

(
�E + i �H 0

0 − �E + i �H

)
=

(
�E 0

0 − �E

)
+

(
iI 0

0 −iI
)(

�H 0

0 − �H

)
= E+ γ0123H. (4.42)

We can shorten the notations with:

i = γ0123 ; F = E+ iH. (4.43)

Odd elements of the space-time algebra are the product by γ0 of an even
element and read (

P 0

0 P̂

)(
0 I

I 0

)
=

(
0 P

P̂ 0

)
. (4.44)

We have also used, in Eq. (1.76) and Eq. (2.59):

∂∂∂ = γμ∂μ =

(
0 ∇
∇̂ 0

)
; A =

(
0 A

Â 0

)
.

Similarly the magnetic potential reads:

B =

(
0 B

B̂ 0

)
. (4.45)

The reverse of an even element is:

Ñ =

(
M 0

0 M †

)
; Ψ̃ =

(
φ 0

0 φ†

)
. (4.46)

The reverse of an odd element is:

B̃ =

(
0 B†

B 0

)
. (4.47)

5. In a Clifford algebra on an n-dimensional linear space, the linear space of even
elements and the linear space of odd elements are linear spaces with dimension 2n−1.
Since the product of two odd elements is even the linear space of odd elements is not
a sub-algebra. Since the product of two even elements is even, the linear space of even
elements is a sub-algebra. In the case of Cl1,3 the even sub-algebra is isomorphic to Cl3.
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With tensorial densities without derivative of Sec. 2.2.2 we have:

ΨΨ̃ =

(
φφ 0

0 φ̂φ†

)
=

(
ρeiβ 0

0 ρe−iβ

)
=

(
Ω1 + iΩ2 0

0 Ω1 − iΩ2

)
= Ω1 + iΩ2 = ρeiβ, (4.48)

Dμ =

(
0 φσμφ

†

φ̂σμφ† 0

)
=

(
φ 0

0 φ̂

)(
0 σμ
σ̂μ 0

)(
φ 0

0 φ†

)
= ΨγμΨ̃, (4.49)

Sk =

(
φσkφ 0

0 −φ̂σkφ†
)

= Ψγk0Ψ̃. (4.50)

We must also notice

Ψ̃Ψ = ΨΨ̃ = Ω1 + iΩ2. (4.51)

We saw in Eq. (2.62) how Hestenes reads the Dirac equation. Since we
have:

Ψγ0e
βi =

(
0 e−βiφ

eβiφ̂ 0

)
, (4.52)

the homogeneous nonlinear wave equation reads in space-time algebra:

∂Ψγ21 = mΨγ0e
βi + qAΨ. (4.53)

For a space-time dilation, with:

x =

(
0 x

x̂ 0

)
; x′ =

(
0 x′

x̂′ 0

)
, (4.54)

and with Eq. (1.80) and Eq. (2.26), we get equalities

x′ = NxÑ ; Ψ′ = NΨ ; ∂∂∂ = Ñ∂∂∂′N. (4.55)

4.3.2 Electromagnetism

The laws of Maxwell–de Broglie electromagnetism become:

F = ∂A (4.56)

∂F = −k20A (4.57)

because

∂A =

(
0 ∇
∇̂ 0

)(
0 A

Â 0

)
=

(
∇Â 0

0 ∇̂A

)
=

(
F 0

0 F̂

)
= F, (4.58)

∂F =

(
0 ∇
∇̂ 0

)(
F 0

0 F̂

)
=

(
0 ∇F̂

∇̂F 0

)
= −k20A. (4.59)
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The laws of electromagnetism with magnetic monopoles become:

F = ∂(A+ iB) (4.60)

∂F =
4π

c
(j+ ik) (4.61)

Since space-time algebra is well known and gives simpler results, what is
the purpose of developing calculations in space algebra? We may think
that space-time algebra is too simple, there is too much symmetry between
space and time. We can use the services of space-time algebra as long as
it is not necessary to distinguish space and time and as long as there is no
zero space-time length. But it is also necessary to never forget that time
is not space. Time flows only from past to future while we can go away
and back in space. Under dilations generated by elements of the Cl∗3 group
the orientation of time and space cannot change. There is no physical way
to change the time orientation and there is no physical way to change the
space orientation. P and T transformations of quantum fields are purely
theoretical.

4.4 A real photon

The beginning of quantum physics was the invention by Einstein in
1905 of a theory of light with quanta of impulse–energy. After Newton’s
corpuscular theory, Huyghens’ undulatory theory was imposed by Fresnel
with his transversal waves. This undulatory theory allowed a synthesis in-
cluding electromagnetism and optics. The next page of this story was the
discovery of the wave associated to any moving particle by Louis de Broglie.
When he had the Dirac equation, he returned to the initial problem of the
wave of a corpuscular photon. A photon with a proper mass m0 < 10−52kg
gives, for all observable radiations, a non-observable dispersion. The cor-
puscular nature of light explains Compton diffusion and it is compatible
with the absorption and emission of light by electrons of atoms. It allows
one to understand the radiation pressure and to calculate completely all
kinds of Doppler effects. In the same time light has also the undulatory
aspects of Fresnel’s waves and we know since Einstein that the density of
photons and the intensity of electromagnetic waves are proportional.

Louis de Broglie first tried to associate a Dirac wave to the photon,
but it was impossible to associate an electromagnetic wave. From this first
attempt he understood that the electromagnetic field of the photon must
be associated to the change of state of the electron interacting with the
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photon. And the only processes of interaction between photons and matter
are absorption and the photoelectric effect.

For his construction of the wave of a photon Louis de Broglie started
from two Dirac spinors, one of a particle and one of an anti-particle, able to
annihilate, giving then all impulse–energy to the exterior. He established
also that electromagnetic quantities must be linear combinations of the
wave components. In the frame of the initial formalism used by de Broglie
his two spinors read

ψ =

⎛⎜⎜⎝
ψ1

ψ2

ψ3

ψ4

⎞⎟⎟⎠ ; ϕ =

⎛⎜⎜⎝
ϕ1

ϕ2

ϕ3

ϕ4

⎞⎟⎟⎠ . (4.62)

They are solutions of the Dirac wave equation for a particle without charge,
like a neutrino

∂0ψ = (α1∂1 + α2∂2 + α3∂3 + i
m

2
α4)ψ, (4.63)

and of the wave equation for its antiparticle, similar to an antineutrino

∂0ϕ = (α1∂1 − α2∂2 + α3∂3 − i
m

2
α4)ϕ, (4.64)

where

x0 = ct ; ∂μ =
∂

∂xμ
; m =

m0c

�
, (4.65)

αjαk + αkαj = 2δjk. (4.66)

It is well known that these matrix relations are not enough to define αμ

uniquely. We can choose different sets of αμ matrices. We choose here a
set working with the Weyl spinors and the relativistic invariance:

αj =

(−σj 0

0 σj

)
, j = 1, 2, 3 ; α4 =

(
0 −I
−I 0

)
; I =

(
1 0

0 1

)
, (4.67)

where σj are the Pauli matrices, and we let

ξ =

(
ψ1

ψ2

)
=

(
ξ1
ξ2

)
; η =

(
ψ3

ψ4

)
=

(
η1
η2

)
,

ζ∗ =

(
ϕ1

ϕ2

)
=

(
ζ∗1
ζ∗2

)
; λ∗ =

(
ϕ3

ϕ4

)
=

(
λ∗1
λ∗2

)
, (4.68)

where a∗ is the complex conjugate of a. With
�∂ = σ1∂1 + σ2∂2 + σ3∂3,

�∂∗ = σ1∂1 − σ2∂2 + σ3∂3, (4.69)
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the wave equation Eq. (4.63) is equivalent to the system

(∂0 + �∂)ξ + i
m

2
η = 0, (4.70)

(∂0 − �∂)η + i
m

2
ξ = 0. (4.71)

ξ and η are the Weyl spinors of the wave ψ and the wave equation of the
anti-particle Eq. (4.64) is equivalent to the system

(∂0 + �∂∗)ζ∗ − i
m

2
λ∗ = 0,

(∂0 − �∂∗)λ∗ − i
m

2
ζ∗ = 0. (4.72)

By complex conjugation we get

(∂0 + �∂)ζ + i
m

2
λ = 0, (4.73)

(∂0 − �∂)λ+ i
m

2
ζ = 0. (4.74)

This system is identical to Eq. (4.70) and Eq. (4.71) if we replace ζ by ξ

and λ by η. We let

φ1 =
√
2

(
ξ1 −η∗2
ξ2 η∗1

)
; φ2 =

√
2

(
ζ1 −λ∗2
ζ2 λ∗1

)
. (4.75)

which have their value in the Pauli algebra. Comparing the system
Eq. (4.70)–Eq. (4.71) to the system Eq. (2.12)–Eq. (2.13) we see from
Eq. (2.21) that this system is equivalent to the equation

∇φ̂1 + m

2
φ1σ12 = 0. (4.76)

Similarly the system Eq. (4.73) – Eq. (4.74) is equivalent to

∇φ̂2 + m

2
φ2σ12 = 0. (4.77)

The two spinors follow the same wave equation. This is consistent with the
linear Dirac theory where charge conjugation changes the sign of the charge
but does not change the sign of the mass.

De Broglie had no theory for the wave of a relativistic system of particles
nor for the interaction between its two spinors. So he simply supposed that
his two half-photons ψ and ϕ are linked, have the same energy and the
same impulse [31]. They satisfy

ϕk∂μψi = (∂μϕk)ψi =
1

2
∂μ(ϕkψi) , k, j = 1, 2, 3, 4 ; μ = 0, 1, 2, 3. (4.78)
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This is equivalent, with Eq. (4.62) and Eq. (4.68), to

ξk(∂μζ
∗
i ) = (∂μξk)ζ

∗
i =

1

2
∂μ(ξkζ

∗
i ),

ξk(∂μλ
∗
i ) = (∂μξk)λ

∗
i =

1

2
∂μ(ξkλ

∗
i ),

ηk(∂μζ
∗
i ) = (∂μηk)ζ

∗
i =

1

2
∂μ(ηkζ

∗
i ), (4.79)

ηk(∂μλ
∗
i ) = (∂μηk)λ

∗
i =

1

2
∂μ(ηkλ

∗
i ).

Wave equations Eq. (4.76) and Eq. (4.77) are form invariant under the
Lorentz dilation D defined by Eq. (1.42) and satisfy

φ′1 =Mφ1 ; φ′2 =Mφ2. (4.80)

4.4.1 The electromagnetism of the photon

We start here from the fact seen in Eq. (4.20) that the electromagnetic
potential A is a contravariant space-time vector, that is a vector transform-
ing as x: A′ = MAM †. We know in addition that Pauli’s principle rules
that products must be antisymmetric. We also know that the σ3 term is
privileged 6 in the Dirac equation. We must then consider a space-time
vector A and an electromagnetic field Fe so defined:

A = φ1iσ3φ
†
2 − φ2iσ3φ

†
1, (4.81)

Fe = ∇Â. (4.82)

The variance of A and the variance of the electromagnetic field Fe under
Cl∗3 are expected variances because

A′ = φ′1iσ3φ
′
2
† − φ′2iσ3φ

′
1
†
= (Mφ1)iσ3(Mφ2)

† − (Mφ2)iσ3(Mφ1)
†

=M(φ1iσ3φ
†
2 − φ2iσ3φ

†
1)M

† =MAM †, (4.83)

Fe = ∇Â =M∇′M̂Â =M∇′M̂AM †(M̂ †)−1 =M(∇′Â′)M
−1

=M−1MMF ′
eM

−1
M−1M =M−1 det(M)F ′

e det(M
−1)M =M−1F ′

eM,

F ′
e =MFeM

−1. (4.84)

A is actually a space-time vector because

A† = (φ1iσ3φ
†
2 − φ2iσ3φ

†
1)

† = φ2(−iσ3)φ†1 − φ1(−iσ3)φ†2 = A. (4.85)

6. We shall develop this in chapter 5.
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The calculation of A with Eq. (4.75) and the Pauli matrices in Eq. (1.19)
gives

Â = 2i

(
η1λ

∗
1 − ξ∗2ζ2 − λ1η

∗
1 + ζ∗2 ξ2 η1λ∗2 + ξ∗2ζ1 − λ1η

∗
2 − ζ∗2 ξ1

η2λ
∗
1 + ξ∗1ζ2 − λ2η

∗
1 − ζ∗1 ξ2 η2λ∗2 − ξ∗1ζ1 − λ2η

∗
2 + ζ∗1 ξ1

)
. (4.86)

We then remark that each product is one of the products in Eq. (4.79) and
this gives

∂μÂ = ∂μ(φ̂1iσ3φ2 − φ̂2iσ3φ1) = 2(∂μφ̂1)iσ3φ2 − 2(∂μφ̂2)iσ3φ1,

∇Â = 2[(∇φ̂1)iσ3φ2 − (∇φ̂2)iσ3φ1]. (4.87)

The Dirac equations Eq. (4.76) and Eq. (4.77) give then

Fe = mφ1(−iσ3)iσ3φ2 −mφ2(−iσ3)iσ3φ1 = m(φ1φ2 − φ2φ1). (4.88)

Any element in the Cl3 algebra as Fe is a sum

Fe = s+ �E + i �H + ip, (4.89)

where s is a scalar, �E is a vector, i �H is a pseudo-vector and ip is a pseudo-
scalar. But we get

F e = s− �E − i �H + ip = m(φ1φ2 − φ2φ1) = m(φ2φ1 − φ1φ2)

= −m(φ1φ2 − φ2φ1) = −Fe = −s− �E − i �H − ip. (4.90)

Fe is 7 therefore a pure bivector:

s = 0 ; p = 0 ; Fe = �E + i �H. (4.91)

This agrees with all we know about electromagnetism and optics. Now
Eq. (4.83) reads

�E + i �H = (∂0 − �∂)(A0 − �A) = ∂0A
0 − �∂A0 − ∂0 �A+ �∂ �A. (4.92)

This is equivalent to the system

0 = ∂μA
μ, (4.93)

�E = −�∂A0 − ∂0 �A, (4.94)
�H = �∂ × �A. (4.95)

We also get

∇̂Fe = m∇̂(φ1φ2 − φ2φ1). (4.96)
7. We have previously supposed that the electromagnetic field F is a pure bivector,

without scalar or pseudo-scalar part, for instance in Eq. (4.3). It is necessary to get
Maxwell’s laws without supplementary non-physical terms. Here we have nothing to
suppose, the pure bivector nature of the electromagnetic field is a consequence of the
antisymmetric building from two spinors and of wave equations.
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A detailed calculation of the matrices shows as previously only the products
present in Eq. (4.79) and this gives

∇̂Fe = 2m[(∇̂φ1)φ2 − (∇̂φ2)φ1]. (4.97)

And we get with wave equations Eq. (4.76) and Eq. (4.77)

∇̂φ1 =
m

2
φ̂1σ21 ; ∇̂φ2 =

m

2
φ̂2σ21, (4.98)

�Â = ∇̂∇Â = ∇̂Fe = m2[φ̂1(−iσ3)φ2 − φ̂2(−iσ3)φ1],

∇̂Fe = −m2Â. (4.99)

So we get the seven laws of the electromagnetism of Maxwell in the vac-
uum, completed by the terms found by Louis de Broglie containing the very
small proper mass m0 = m�

c of the photon. The seven laws are exactly the
same, but the quantities are here only real or with real components. Fe

is therefore exactly the electromagnetic field of classical electromagnetism
and optics. The definition Eq. (4.81) – Eq. (4.82) allows us to get a the-
ory of a massive photon with a wave which includes real components of
an electromagnetic space-time potential vector A, contravariant, and an
electromagnetic bivector field Fe. This is an improvement in the theory
of light, coming from the use of Cl3 allowing an antisymmetric building,
instead of Dirac matrices. Moreover the potential term is directly linked to
the two spinors as much as the field bivector. It is an important difference
with classical electromagnetism where potential terms are often considered
as non-physical. This difference comes with quantum physics: potential
terms are the electromagnetic terms present in the Dirac or Schrödinger
wave equations.

The differential laws Eq. (4.82) and Eq. (4.99) are form invariant under
the dilations defined by Eq. (1.42). This invariance under Cl∗3 implies that
they are invariant under the restricted Lorentz group.

The quantum wave of this photon is actually an electromagnetic wave,
with field and potential term with real components.

Potentials and fields were defined from antisymmetric products of
spinors. They can disappear as soon as the two spinors are equal. They
can appear as soon as the two spinors are not equal.

The result of the conditions Eq. (4.79) of Louis de Broglie is a lin-
earization of the derivation of products which gives linear equations for the
bosons built from the fermions. This is how the linear operator ∇ acts both
in the Dirac equation and in the Maxwell equations. This linearization gives
Maxwell’s laws.
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Miscellaneous

We study a first consequence of the two space-time manifolds and

of the dilations between these two manifolds: the non-isotropy of the

intrinsic manifold. We link this with the existence of three kinds of

leptons. We present new possibilities for the wave of systems of identical

particles. We study a wave equation without possibility of Lagrangian

mechanism. We present the three other Lochak’s photons.

The wave of the electron induces, in each space-time point, a geometric
transformation from the tangent space-time to an intrinsic manifold linked
to the wave, into the usual space-time of restricted relativity. The intrinsic
space-time, contrary to the usual space-time, is not isotropic, and we study
now this anisotropy.

5.1 Anisotropy

The fact that there exists, in the Dirac theory, a privileged direction was
remarked on by Louis de Broglie in his first work on the Dirac equation: [30]
p.138 1 "Les fonctions ψi solutions de ces équations sont donc intimement
liées au choix des axes comme dans la théorie de Pauli; elles doivent servir à
calculer des probabilités pour lesquelles l’axe des z joue un rôle particulier".
The solution to this difficulty is that with a rotation it is always possible
to bring the z axis into any direction of the space.

The solution uses then a conveniently chosen element of Cl∗3 , which
generates a spatial rotation and rotates the third axis onto the chosen di-
rection. There are always two solutions, and then the final space-time, the
relative space-time, is isotropic and has no privileged direction. But the

1. Translation:"The ψi functions solutions of these equations are then completely
linked to the choice of axis as into the Pauli theory; they must serve to calculate proba-
bilities for which the z axis plays a particular role".

65
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initial space-time, the intrinsic space-time, on the contrary, remains per-
fectly non-isotropic: before as after the rotation, it is always σ3 which is
privileged. We have remarked previously that with the Lorentz rotations
of the complex formalism the γμ matrices are invariant. They are identical
before or after the rotation. Whatever formalism is used it is always the
third component of the spin that is measured and the square of the spin
vector, never the first or the second component of the spin. The reason is
evident if we regard the wave equation or the Lagrangian in the Clifford
algebra of space. This third direction is present in the wave equation and
in the Lagrangian which both contain an iσ3.

Now, and this is the first concrete consequence of calculations with
the Pauli algebra, it is perfectly possible to write two other Lagrangian
densities, two other wave equations similar to the Dirac equation:

∇φ̂+ qAφ̂σ23 +me−iβφσ23 = 0, (5.1)

∇φ̂+ qAφ̂σ31 +me−iβφσ31 = 0. (5.2)

The invariant wave equations obtained by multiplying on the left by φ are

φ(∇φ̂)σ32 + φqAφ̂+mρ = 0, (5.3)

φ(∇φ̂)σ13 + φqAφ̂+mρ = 0. (5.4)

With the wave equation Eq. (5.1) and Eq. (5.3) it is the first axis which is
privileged. The conservative space-time vectors are D0 and D1. To solve
the wave equation Eq. (5.1) for the hydrogen atom, we shall take again
the method of separation of variables of Appendix C, making a circular
permutation p on indices 1, 2, 3 of matrices σ: 1 �→ 2, 2 �→ 3, 3 �→ 1, and
on indices of formula Eq. (C.1). Since it is the only thing that changes, the
results will be similar.

With the wave equation Eq. (5.2), it is the second axis which is priv-
ileged. The conservative space-time vectors are D0 and D2. To solve the
wave equation Eq. (5.2) for the hydrogen atom, we shall take again the
method of separation of variables of Appendix C, making a circular permu-
tation p2 = p−1 on indices 1, 2, 3 of matrices σ, and on indices of formula
Eq. (C.1). Since it is the only thing that changes, the results will be similar.

In all that we know today about experimental physics there is something
very similar. Beside electrons there exist also muons and tauons. The three
kinds of objects are similar and nevertheless different. Muons have been
known for more than 70 years, and until now there has been no simple
explanation why they exist, or what distinguishes them from electrons.
We shall associate here to each category, that is to say to each of the
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three generations, one of the three wave equations Eq. (3.1), Eq. (5.3) and
Eq. (5.4). The similarity between the wave equations allows us to explain
why electrons, muons and tauons have the same properties, behave in the
same way in an electromagnetic field, and have the same energy levels in
a Coulombian potential. In fact, to see a difference between these three
equations, it is necessary to go past the wave equation of a single particle
and to enter the question of a system made of different kinds 2 of particles.

The third direction or the first direction may be put after a rotation in
any direction but a rotation cannot turn both the third direction and the
first direction into a given direction. So in this direction it is impossible to
measure both the spin of an electron following Eq. (3.2) and the spin of a
muon following Eq. (5.3).

In addition we know that a muon, even though it is a particle with spin
1
2 like the electron, cannot spontaneously disintegrate into a lone electron.
Its disintegration gives an electron plus a muonic neutrino and an electronic
antineutrino. This may be understood in the following way: The wave of
the muonic neutrino, like the wave of the muon, has a measurable spin in
the first direction and takes away the muon’s spin. The spin of the electron
which is measurable in the third direction is brought by the antineutrino
with a spin opposed to the spin of the electron.

We have supposed arbitrarily that the electron follows Eq. (3.1) and that
the muon follows Eq. (5.3). One or the other could also follow Eq. (5.4),
nothing allows us to say. On the other hand, the choice made by Nature
of one or another equation justifies the fact that physical space is oriented:
Consider in the intrinsic space three space vectors having respectively the
third direction and the wavelength of the electron, the first direction and
the wavelength of the muon, and the second direction and the wavelength
of a tauon. These three vectors form a basis of the intrinsic space. If we
exchange now the second and the third vectors, we get another basis, with
another orientation.

Equation (3.1), Eq. (5.3) and Eq. (5.4) are equivalent only if the mass
terms are equal in the different equations. But experiment shows that
these masses are completely different from one generation to another. This
difference, of unknown origin, differentiates the three generations of leptons.

2. We know for instance that a muon within the electronic cloud of an atom does not
respect the Pauli exclusion principle. This is rather easy to understand if that exclusion
principle is linked to the spin of the different particles, because the spin of an electron
following Eq. (3.2) is always measured in the third direction and cannot be added or
subtracted to the spin of a muon following Eq. (5.1), which is always measured in the
first direction.
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We have calculated the affine connection of the intrinsic manifold [15].
In the case of plane waves studied in chapters 2 and 3 only two terms are
not zero and give a torsion. These torsion terms are linked to the proper
mass of the particle.

5.2 Systems of electrons

The non-relativistic Schrödinger equation for a particle system uses in
the case of a system of two particles without spin a wave ψ = ψ1ψ2 which is
the product of the two waves of each particle, when it is possible to neglect
the interaction between these particles. We cannot transpose ψ1ψ2 into
φ1φ2 which should transform into Mφ1Mφ2 under the dilation R defined
in Eq. (1.42), because M does not commute with φ. Another product is
suggested by Eq. (4.14) because if φ12 = φ1φ

−1
2 we get

φ′12 = φ′1φ
′−1
2 =Mφ1φ

−1
2 M−1 =Mφ12M

−1, (5.5)

and φ12 transforms under a dilation as the electromagnetic field. But the
factor e−iE

�
t of non-relativistic quantum mechanics becomes in the case of

the electron e−
E
�cx

0σ12 with the Cl3 algebra, and with φ1φ−1
2 the energies are

not added but subtracted. To get the addition of energies we can consider
terms as φ1σ1φ−1

2 or φ1σ2φ−1
2 because σ1 and σ2 anti-commute with σ12

and

σ1e
− E

�cx
0σ12 = e

E
�cx

0σ12σ1. (5.6)

Since we have

σ2 = σ1σ12 = σ1e
π
2 σ12 , (5.7)

σ1 and σ2 differ only by a constant gauge factor and we can choose σ1.
Since we know that two electrons are identical we can consider only terms
such as φ1σ1φ−1

2 ± φ2σ1φ
−1
1 . The Pauli principle invites us to consider for

the wave of a system of two electrons

φ12 = φ1σ1φ
−1
2 − φ2σ1φ

−1
1 , (5.8)

which is antisymmetric:

φ21 = −φ12, (5.9)

and transforms under a dilation R of dilator M as F [14]

φ′12 =Mφ12M
−1. (5.10)
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For a system of three electrons whose respective waves are φ1, φ2, φ3 we
consider

φ123 = φ12φ3 + φ23φ1 + φ31φ2, (5.11)
which satisfies

φ123 = φ231 = φ312 = −φ132 = −φ321 = −φ132, (5.12)

φ′123 =Mφ123. (5.13)
The Pauli principle is satisfied and φ123 transforms 3 as a unique electronic
wave. Then for four electrons we consider

φ1234 = φ12φ34 + φ23φ14 + φ31φ24 + φ34φ12 + φ14φ23 + φ31φ24, (5.14)
which is antisymmetric, and transforms also as the electromagnetic field

φ′1234 =Mφ1234M
−1. (5.15)

We can easily generalize to n electrons. We get n+ 1 wave equations, one
for each electronic wave

∇φ̂k + qAkφ̂kσ12 +me−iβkφkσ12 = 0, (5.16)
where Ak is the sum of the exterior potential A and the potential created
by the n − 1 other electrons and βk is the Yvon–Takabayasi angle of the
kth electron. The wave of the system is antisymmetric. The wave equation
of this wave is determined by the n wave equations of each particle. If
n is even φ12...n transforms under a dilation as the electromagnetic field
F . The wave of an even system appears as a boson wave. Even systems
compose greater systems symmetrically as in Eq. (5.14). This is the source
of Bose–Einstein statistics. If n is odd φ12...n transforms under a dilation
as a spinor φ. The wave of an odd system of electrons transforms under a
dilation as the wave of a unique electron.

The wave of a system propagates, like the waves of each electron, in the
usual space-time. It is not necessary to use configuration spaces. Difficul-
ties arising from the difference between a unique time and several spaces
disappear. Space is, like time, unique in this model. The wave of a system
is not very different from the waves of its individual parts; they continue
to exist and to propagate.

This model can also explain why a muon in an electronic cloud does not
follow the Pauli’s exclusion principle: with Eq. (5.1) for instance the phase
contains not a σ12 factor, but instead a σ23 factor, and the muon cannot
add its impulse–energy and so cannot enter the process of construction of
the wave of a system described here.

3. If a similar construction is possible for quarks, this could explain why a proton or
a neutron containing three quarks is seen also as a unique spinor, transforming under a
Lorentz rotation as the wave of a unique electron.
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5.3 Equation without Lagrangian formalism

We have seen in Sec. 2.4 that the Lagrangian density of the Dirac wave
is exactly the scalar part of the invariant wave equation. The Lagrangian
formalism is a consequence, not the cause of the Dirac equation. Therefore,
if we modify the wave equation without changing its scalar part, we shall
get a wave equation which cannot result from a Lagrangian mechanism,
since the scalar part gives the Dirac equation without change [20]. We
consider the invariant wave equation

φ(∇φ̂)σ21 + φqAφ̂+mφφ(1 + εσ3) = 0, (5.17)

where ε is a very small real constant. Only the mass term is changed
from the invariant Eq. (2.64) which is equivalent to the Dirac equation.
Computation of the first terms is unchanged, the mass term is

mφφ(1 + εσ3) = m(Ω1 + iΩ2)(1 + εσ3)

= mΩ1 +mεΩ1σ3 +mεΩ2iσ3 + imΩ2, (5.18)

and the system Eq. (2.75) to Eq. (2.82) becomes

0 = w3 + V 0 +mΩ1 ; 0 = v2 + V 1, (5.19)

0 = −v1 + V 2 ; 0 = w0 + V 3 +mεΩ1, (5.20)

0 = −v3 +mΩ2 ; 0 = w2, (5.21)

0 = −w1 ; 0 = −v0 +mεΩ2. (5.22)

This last equation implies that the current of probability is no longer con-
servative, so this wave equation is certainly unusual. Now it is easy to
avoid the problem of the conservation of probabilities: we start from the
homogeneous non-linear Eq. (3.1) and we add the same mass term

φ(∇φ̂)σ21 + φqAφ̂+mρ(1 + εσ3) = 0. (5.23)

The system Eq. (3.10) to Eq. (3.17) becomes

0 = w3 + V 0 +mρ, (5.24)

0 = v2 + V 1, (5.25)

0 = −v1 + V 2, (5.26)

0 = w0 + V 3 +mερ, (5.27)

0 = −v3, (5.28)

0 = w2, (5.29)

0 = −w1, (5.30)

0 = −v0. (5.31)
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And as previously we have two conservative currents, J = D0 and K =

D3. It is easy to see that Eq. (5.23) is invariant under Cl∗3 , there are two
gauge invariances (see Sec. 3.1). The angular momentum operators of the
Dirac theory are still available, but there is no Hamiltonian to commute
with them. This wave equation cannot come from a Lagrangian density
since such a density should modify Eq. (5.24), which gives Eq. (3.1), not
Eq. (5.23).

5.3.1 Plane waves

We consider a plane wave with a phase ϕ with the vector v defined in
Eq. (3.24). Without an exterior electromagnetic field we get in place of
Eq. (3.28)

−mvφ̂+me−iβφ(1 + εσ3) = 0. (5.32)

This gives

φ(1 + εσ3) = eiβvφ̂, (5.33)

φ̂(1 − εσ3) = e−iβ v̂φ, (5.34)

φ(1 + εσ3)(1 − εσ3) = eiβvφ̂(1− εσ3),

φ(1 − ε2) = eiβve−iβ v̂φ,

(1 − ε2)φ = vv̂φ, (5.35)

v · v = vv̂ = 1− ε2, (5.36)

||v|| =
√
1− ε2. (5.37)

We let then

c′ = c
√
1− ε2 ; v = v′

√
1− ε2. (5.38)

And we get

||v′|| = 1. (5.39)

First consequence: c′, not c, is the velocity limit of this unusual quantum
object. The present study has no known physical application, but this
wave equation indicates that the limit 4 speed c is not as general [19] as we
thought.

4. Furthermore, if ε tends to 1 the limit speed tends to 0 and may be very small.
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5.4 Three other photons of Lochak

Following Eq. (4.81) seven other space-time vectors should be possible
on the model φ1Xφ†2−φ2Xφ†1 since the Cl3 algebra is 8-dimensional. Only
three of these seven choices, X = −σ3, X = i and X = 1, are compatible 5

with Eq. (4.79) and we have established [15] that this gives the three other
photons of G. Lochak [50] [51] [52]. Firstly if X = −σ3,

iB = φ1σ̂3φ
†
2 − φ2σ̂3φ

†
1 ; Fm = ∇îB, (5.40)

gives his magnetic photon. As with the electric photon each quantity is real
or has real components. It is possible to consider a total field F = Fe+Fm

satisfying

F = ∇(Â+ iB), (5.41)

∇̂F = −m2(Â+ iB), (5.42)

which are laws of the electromagnetism with electric charges and magnetic
monopoles, and densities of electric current j and magnetic current k sat-
isfying

j = − c

4π
m2A ; k = − c

4π
m2B. (5.43)

j and k are very small since m is very small. Even if A and B are con-
travariant vectors, the variance of m allows j and k to be covariant vectors
under Cl∗3 , varying as ∇, not as x. Now

A(i) = φ1iφ
†
2 − φ2iφ

†
1 ; s = ∇Â(i), (5.44)

defines an invariant scalar field s while

iB(1) = φ1φ
†
2 − φ2φ

†
1 ; ip = ∇îB(1), (5.45)

defines an invariant pseudo-scalar field ip. We can put together cases X = i

and X = 1. We let

P = A(i) + iB(1) ; F0 = ∇P̂ = s+ ip, (5.46)

and we get

∇̂F0 = −m2P̂ . (5.47)

So it is possible to get in the frame of Cl3 all four photons of the theory of
de Broglie enlarged by Lochak and the whole thing is form invariant under
Cl∗3 . There are differences in comparison with the construction based on the

5. This comes from the non-commutative product in Cl3. Since σ12 is present in the
Dirac equation, only terms commuting with σ12 work here.
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Dirac matrices: Physical quantities are real or have real components and
they are obtained by antisymmetric products of spinors. This is very easy to
get with the internal multiplication of the Cl3 algebra and was very difficult
to make from the complex uni-column matrices. These two differences are
advantageous because vectors and tensors of classical electromagnetism and
optics have only real components. And de Broglie had understood very
early that antisymmetric products are enough to get the Bose–Einstein
statistics for bosons made of an even number of fermions. The scalar field
of G. Lochak and the pseudo-scalar field for which de Broglie was cautious
are perhaps to be identified with the scalar Higgs boson that physicists are
today studying. Since s and p fields are obtained here independently from
the field of the electric photon and the magnetic photon, their mass is not
necessarily very small and may be huge. Curiously it was de Broglie’s first
idea about the non-Maxwellian part of his theory. Were the Higgs bosons
foreseen as early as 1934?

5.5 Uniqueness of the electromagnetic field

The Dirac equation contains a privileged σ3 which can be generalized
as σj , j = 1, 2, 3. We generalize then Eq. (4.81) and Eq. (4.82) if we let

A(j) = φ1iσjφ
†
2 − φ2iσjφ

†
1, (5.48)

Fe = ∇Â(j), (5.49)

with the φ1 and φ2 waves following

∇φ̂1 =
m

2
φ1(−iσj), (5.50)

∇φ̂2 =
m

2
φ2(−iσj). (5.51)

We can also start from fields and get from them potentials. The electro-
magnetic field is then defined by Eq. (4.88)

Fe = m(φ1φ2 − φ2φ1). (5.52)

Potentials terms are linked to this field by Dirac equations Eq. (5.1) and
Eq. (5.2), they satisfy

Fe = ∇Â(j) ; ∇̂Fe = −m2Â(j). (5.53)

It is interesting to note that Fe is independent of the index j and the
electromagnetic field is then unique.
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Chapter 6

Electro-weak interactions:
The lepton case

We study the weak interactions of the electron with its neutrino.

The covariant gauge derivative also accounts for their charge conjugate

waves. It is form invariant under Cl∗3 and gauge invariant under the

U(1) × SU(2) gauge group. We study the geometric transformation

linked to the wave. We get a remarkable identity which make the wave

often invertible. We get a wave equation with mass term that is form

invariant and that is gauge invariant under the gauge group of electro-

weak interactions.

6.1 The Weinberg–Salam model for the electron

An extension of the Dirac equation up to electro-weak interactions [61]
was tried by D. Hestenes [40] and by R. Boudet [3] [4] in the frame of the
Clifford algebra Cl1,3 of the space-time. We used in [17] another start which
implies the use of the greater frame Cl2,3. A greater frame was necessary
because we wanted to use no supplementary condition. Now, the study
that we shall make in this chapter necessitates that we use the condition
Eq. (2.90) or Eq. (2.95) which links the wave of the antiparticle to the wave
of the particle in the standard model. Therefore the mathematical frame
remains the space-time algebra which has 16 dimensions, enough to accom-
modate 8 real parameters of the wave of the electron and 8 parameters 1 of
its neutrino. We saw in Sec. 3.5 that the condition Eq. (2.95) is compat-
ible with the nonlinear equation and that it solves the puzzle of negative
energies.

We begin with the electron case and we follow [38]. We change nothing
to the Dirac wave of the electron, denoted as ψe in the Dirac formalism and

1. We shall see further that only four of them are nonzero.

75
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as φe with space algebra. We use the same notations as previously for Weyl
spinors. The wave of the electronic neutrino is denoted as ψn, the wave of
the positron as ψp and the wave of the electronic anti-neutrino as ψa. As
previously right spinors are ξ Weyl spinors and left ones are η spinors,

ψe =

(
ξe
ηe

)
; ψn =

(
ξn
ηn

)
; ψp =

(
ξp
ηp

)
; ψa =

(
ξa
ηa

)
. (6.1)

We have

φe =
√
2
(
ξe −iσ2η∗e

)
; φ̂e =

√
2
(
ηe −iσ2ξ∗e

)
, (6.2)

φn =
√
2
(
ξn −iσ2η∗n

)
; φ̂n =

√
2
(
ηn −iσ2ξ∗n

)
, (6.3)

φ̂p = φ̂eσ1 ; φ̂a = φ̂nσ1, (6.4)

which gives

φ̂p =
√
2
(
ηp −iσ2ξ∗p

)
; φp =

√
2
(
ξp −iσ2η∗p

)
, (6.5)

φ̂a =
√
2
(
ηa −iσ2ξ∗a

)
; φa =

√
2
(
ξa −iσ2η∗a

)
, (6.6)

ξ1p = η∗2e, ξ2p = −η∗1e; η1p = −ξ∗2e; η2p = ξ∗1e
ξ1a = η∗2n, ξ2a = −η∗1n; η1a = −ξ∗2n; η2a = ξ∗1n. (6.7)

We used in [17] a wave Ψ function of the space-time with value into the
Cl2,3 = M4(C) algebra. We placed waves of particle on the first line and
waves of antiparticle on the second line to get correct transformations of
left and right waves under Lorentz dilations. We used a σ1 factor which
was a necessary factor exchanging ξ and η terms. This allows us to get
a wave for these four particles 2 of the electronic sector and with the link
Eq. (2.95) between the wave of the particle and the wave of the antiparticle
we have

Ψ =

(
φe φn
φ̂aσ1 φ̂pσ1

)
=

(
φe φn
φ̂n φ̂e

)
. (6.8)

Now with Eq. (6.4) and Eq. (6.8) the wave is a function of space-time with
value in the Clifford algebra of space-time. The Weinberg–Salam model
uses ξe, ηe, ηn and supposes ξn = 0. This hypothesis will be used later
but not immediately. To separate ξe, ηe and ηn the Weinberg–Salam model

2. We could exchange the places of φe and φn. With Eq. (6.8) the wave of the
electron has value in the even sub-algebra and the neutrino has value in the odd part
of the algebra. The other choice is possible if we adapt the definition of projectors in
Eq. (6.12) to Eq. (6.16).
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uses projectors 1
2 (1 ± γ5), which read with our choice Eq. (1.75) of Dirac

matrices:
1

2
(1− γ5)ψ = ψL =

(
0 0

0 I

)(
ξ

η

)
=

(
0

η

)
, (6.9)

1

2
(1 + γ5)ψ = ψR =

(
I 0

0 0

)(
ξ

η

)
=

(
ξ

0

)
. (6.10)

Then for particles left waves are η waves and right waves are ξ waves. This
is Cl∗3 invariant, consequently relativistic invariant, since under a Lorentz
dilation D defined by D : x �→ x′ = MxM † we have Eq. (2.9): ξ′ = Mξ,
η′ = M̂η. The γ5 matrix is not included 3 in the space-time algebra, but
this is not a problem here, because the projectors separating ξ and η are in
space algebra 1

2 (1± σ3):

φR =
√
2
(
ξ 0
)
= φ

(
1 0

0 0

)
= φ

1

2
(1 + σ3),

φL =
√
2
(
0 −iσ2η∗

)
= φ

(
0 0

0 1

)
= φ

1

2
(1− σ3), (6.11)

φ̂L =
√
2
(
η 0
)
= φ̂

1

2
(1 + σ3) ; φ̂R = φ̂

1

2
(1− σ3).

We define now two projectors P± and four operators P0, P1, P2, P3 acting
in the space-time algebra as follows

P±(Ψ) =
1

2
(Ψ± iΨγ21) ; i = γ0123, (6.12)

P0(Ψ) = Ψγ21 +
1

2
Ψi+

1

2
iΨγ30 = Ψγ21 + P−(Ψ)i, (6.13)

P1(Ψ) =
1

2
(iΨγ0 +Ψγ012) = P+(Ψ)γ3i, (6.14)

P2(Ψ) =
1

2
(Ψγ3 − iΨγ123) = P+(Ψ)γ3, (6.15)

P3(Ψ) =
1

2
(−Ψi+ iΨγ30) = P+(Ψ)(−i). (6.16)

Noting PμPν(Ψ) = Pμ[Pν(Ψ)] they satisfy

P1P2 = P3 = −P2P1,

P2P3 = P1 = −P3P2,

P3P1 = P2 = −P1P3, (6.17)

P 2
1 = P 2

2 = P 2
3 = −P+,

P0Pj = PjP0 = −iPj , j = 1, 2, 3.

3. This was wrongly considered as a reason to forbid the use of space-time algebra.
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The Weinberg–Salam model replaces partial derivatives ∂μ by covariant
derivatives

Dμ = ∂μ − ig1
Y

2
Bμ − ig2TjW

j
μ, (6.18)

with Tj =
τj
2 for a doublet of left-handed particles and Tj = 0 for a singlet

of right-handed particle. Y is the weak hypercharge, YL = −1, YR = −2

for the electron. To transpose into space-time algebra, we let

D = σμDμ ; D = γμDμ =

(
0 D

D̂ 0

)
, (6.19)

B = σμBμ ; B = γμBμ =

(
0 B

B̂ 0

)
, (6.20)

W j = σμW j
μ ; Wj = γμW j

μ =

(
0 W j

Ŵ j 0

)
. (6.21)

We will prove now that Eq. (6.18) comes from

D = ∂∂∂ +
g1
2
BP0 +

g2
2
(W1P1 +W2P2 +W3P3). (6.22)

Firstly we have in space-time algebra (see Sec. 1.4.1)

∂∂∂Ψ =

(
0 ∇
∇̂ 0

)(
φe φn
φ̂aσ1 φ̂pσ1

)
=

(
∇φ̂aσ1 ∇φ̂pσ1
∇̂φe ∇̂φn

)
, (6.23)

while we get with Eq. (6.19)

DΨ =

(
0 D

D̂ 0

)(
φe φn
φ̂aσ1 φ̂pσ1

)
=

(
Dφ̂aσ1 Dφ̂pσ1
D̂φe D̂φn

)
. (6.24)

To compute P0(Ψ) we use

P0(Ψ) =

(
p0(φe) p0(φn)

p0(φ̂a)σ1 p0(φ̂p)σ1

)
. (6.25)

And we get

Ψγ21 = i

(
φeσ3 φnσ3

−φ̂aσ3σ1 −φ̂pσ3σ1

)
, (6.26)

1

2
Ψi =

i

2

(
φe −φn
φ̂aσ1 −φ̂pσ1

)
, (6.27)

1

2
iΨγ30 =

i

2

(
φeσ3 −φnσ3
φ̂aσ3σ1 −φ̂pσ3σ1

)
. (6.28)
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Then we get

P0(Ψ) = i

(
φe

1+3σ3

2 φn
−1+σ3

2

φ̂a
1−σ3

2 σ1 φ̂p
−1−3σ3

2 σ1

)
, (6.29)

p0(φe) = iφe
1 + 3σ3

2
= i(2φeR − φeL), (6.30)

p0(φn) = iφn
−1 + σ3

2
= −iφnL, (6.31)

p0(φ̂p) = iφ̂p
−1− 3σ3

2
= −i(2φ̂pL − φ̂pR), (6.32)

p0(φ̂a) = iφ̂a
1− σ3

2
= iφ̂aR, (6.33)

with

φeL = φe
1− σ3

2
; φeR = φe

1 + σ3
2

, (6.34)

φnL = φn
1− σ3

2
; φnR = φn

1 + σ3
2

, (6.35)

φ̂pL = φ̂p
1 + σ3

2
; φ̂pR = φ̂p

1− σ3
2

, (6.36)

φ̂aL = φ̂a
1 + σ3

2
; φ̂aR = φ̂a

1− σ3
2

, (6.37)

which gives

BP0(Ψ) =

(
0 B

B̂ 0

)(
p0(φe) p0(φn)

p0(φ̂a)σ1 p0(φ̂p)σ1

)

= i

(
Bφ̂aRσ1 −B(2φ̂pL − φ̂pR)σ1

B̂(2φeR − φeL) −B̂φnL

)
. (6.38)

Next we let

Pj(Ψ) =

(
pj(φe) pj(φn)

pj(φ̂a)σ1 pj(φ̂p)σ1

)
, j = 1, 2, 3. (6.39)

We get for j = 1

iΨγ0 = i

(
φn φe

−φ̂pσ1 −φ̂aσ1

)
; Ψγ012 = i

(
−φnσ3 −φeσ3
φ̂pσ3σ1 φ̂aσ3σ1

)
,

P1(Ψ) = i

(
φn

1−σ3

2 φe
1−σ3

2

φ̂p
−1+σ3

2 σ1 φ̂a
−1+σ3

2 σ1

)
= i

(
φnL φeL

−φ̂pRσ1 −φ̂aRσ1

)
, (6.40)

p1(φe) = iφnL ; p1(φn) = iφeL,

p1(φ̂a) = −iφ̂pR ; p1(φ̂p) = −iφ̂aR. (6.41)
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We get for j = 2

Ψγ3 =

(
−φnσ3 φeσ3
φ̂pσ3σ1 −φ̂aσ3σ1

)
; −iΨγ123 =

(
φn −φe

−φ̂pσ1 φ̂aσ1

)
,

P2(Ψ) =

(
φn

1−σ3

2 φe
−1+σ3

2

φ̂p
−1+σ3

2 σ1 φ̂a
1−σ3

2 σ1

)
=

(
φnL −φeL

−φ̂pRσ1 φ̂aRσ1

)
, (6.42)

p2(φe) = φnL ; p2(φn) = −φeL,
p2(φ̂a) = −φ̂pR ; p2(φ̂p) = φ̂aR. (6.43)

We get for j = 3

−Ψi = i

(
−φe φn

−φ̂aσ1 φ̂pσ1

)
; iΨγ30 = i

(
φeσ3 −φnσ3
φ̂aσ3σ1 −φ̂pσ3σ1

)
,

P3(Ψ) = i

(
φe

−1+σ3

2 φn
1−σ3

2

φ̂a
−1+σ3

2 σ1 φ̂p
1−σ3

2 σ1

)
= i

(
−φeL φnL

−φ̂aRσ1 φ̂pRσ1

)
, (6.44)

p3(φe) = −iφeL ; p3(φn) = iφnL,

p3(φ̂a) = −iφ̂aR ; p3(φ̂p) = iφ̂pR. (6.45)

We also have

WjPj(Ψ) =

(
0 W j

Ŵ j 0

)(
pj(φe) pj(φn)

pj(φ̂a)σ1 pj(φ̂p)σ1

)

=

(
W jpj(φ̂a)σ1 W

jpj(φ̂p)σ1
Ŵ jpj(φe) Ŵ jpj(φn)

)
. (6.46)

Therefore Eq. (6.22) gives the system

Dφ̂a = ∇φ̂a + g1
2
Bp0(φ̂a) +

g2
2
W jpj(φ̂a), (6.47)

Dφ̂p = ∇φ̂p + g1
2
Bp0(φ̂p) +

g2
2
W jpj(φ̂p), (6.48)

D̂φe = ∇̂φe + g1
2
B̂p0(φe) +

g2
2
Ŵ jpj(φe), (6.49)

D̂φn = ∇̂φn +
g1
2
B̂p0(φn) +

g2
2
Ŵ jpj(φn). (6.50)

With Eq. (6.30) to Eq. (6.33), Eq. (6.41), Eq. (6.43) and Eq. (6.45) this
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gives
Dφ̂a = ∇φ̂a + i

g1
2
Bφ̂aR +

g2
2
[(−iW 1 −W 2)φ̂pR − iW 3φ̂aR], (6.51)

Dφ̂p = ∇φ̂p + i
g1
2
B(−2φ̂pL + φ̂pR) +

g2
2
[(−iW 1 +W 2)φ̂aR + iW 3φ̂pR],

(6.52)

D̂φe = ∇̂φe + i
g1
2
B̂(2φeR − φeL) +

g2
2
[(iŴ 1 + Ŵ 2)φnL − iŴ 3φeL],

(6.53)

D̂φn = ∇̂φn − i
g1
2
B̂φnL +

g2
2
[(iŴ 1 − Ŵ 2)φeL + iŴ 3φnL]. (6.54)

Using the conjugation M �→ M̂ in Eq. (6.53) and Eq. (6.54) gives
Dφ̂a = ∇φ̂a + i

g1
2
Bφ̂aR + i

g2
2
[(−W 1 + iW 2)φ̂pR −W 3φ̂aR], (6.55)

Dφ̂p = ∇φ̂p + i
g1
2
B(−2φ̂pL + φ̂pR) + i

g2
2
[−(W 1 + iW 2)φ̂aR +W 3φ̂pR],

(6.56)

Dφ̂e = ∇φ̂e + i
g1
2
B(−2φ̂eR + φ̂eL) + i

g2
2
[−(W 1 + iW 2)φ̂nL +W 3φ̂eL],

(6.57)

Dφ̂n = ∇φ̂n + i
g1
2
Bφ̂nL + i

g2
2
[(−W 1 + iW 2)φ̂eL −W 3φ̂nL]. (6.58)

We study firstly the case of the electron and its neutrino. We have with
Eq. (6.34)

φ̂eL = φ̂e
1 + σ3

2
; φ̂eLσ3 = φ̂eL, (6.59)

φ̂eR = φ̂e
1− σ3

2
; φ̂eRσ3 = −φ̂eR, (6.60)

−2φ̂eR + 2φ̂eL = 2(φ̂eR + φ̂eL)σ3 = 2φ̂eσ3, (6.61)
and we get for Eq. (6.57) and Eq. (6.58)

Dφ̂e = ∇φ̂e + g1Bφ̂eiσ3 +
i

2
(−g1B + g2W

3)φ̂eL − i
g2
2
(W 1 + iW 2)φ̂nL,

(6.62)

Dφ̂n = ∇φ̂n − i

2
(−g1B + g2W

3)φ̂nL + i
g2
2
(−W 1 + iW 2)φ̂eL. (6.63)

We separate left and right parts of the wave:
Dφ̂nR = ∇φ̂nR ; D̂φnR = ∇̂φnR, (6.64)

Dφ̂nL = ∇φ̂nL +
i

2
(g1B − g2W

3)φ̂nL + i
g2
2
(−W 1 + iW 2)φ̂eL, (6.65)

Dφ̂eR = ∇φ̂eR − ig1Bφ̂eR ; D̂φeR = ∇̂φeR + ig1B̂φeR, (6.66)

Dφ̂eL = ∇φ̂eL +
i

2
(g1B + g2W

3)φ̂eL − i
g2
2
(W 1 + iW 2)φ̂nL. (6.67)
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which is equivalent 4 to

Dμξn = ∂μξn, (6.68)

Dμηn = ∂μηn + i
g1
2
Bμηn − i

g2
2
[(W 1

μ − iW 2
μ)ηe +W 3

μηn], (6.69)

Dμξe = ∂μξe + ig1Bμξe, (6.70)

Dμηe = ∂μηe + i
g1
2
Bμηe − i

g2
2
[(W 1

μ + iW 2
μ)ηn −W 3

μηe]. (6.71)

Equation (6.69) and Eq. (6.71) give for the “lepton doublet” ψL =

(
ηn
ηe

)
with weak isospin Y = −1:

DμψL = ∂μψL − ig1
Y

2
BμψL − i

g2
2
W j

μτjψL,

τ1 = γ0 ; τ2 = γ123 ; τ3 = γ5. (6.72)

With Eq. (6.68) we see that the right part of the wave of the neutrino
does not interact. Therefore we can suppose ξn = 0. Equation (6.70) is
interpreted as a SU(2) singlet ψR = ξ with weak isospin Y = −2:

DμψR = ∂μψR − ig1
Y

2
BμψR. (6.73)

Finally we see here that all features of weak interactions, with a doublet of
left waves, a singlet of right wave, a non-interacting right neutrino, and a
charge conjugation exchanging right and left waves are obtained here from
very simple hypotheses:

1 – The wave of all components of the lepton sector, electron, positron,
electronic neutrino and anti-neutrino, is the function Eq. (6.8) of space-time
with value into the Clifford algebra of the space-time.

2 – Four operators P0, P1, P2, P3 are defined by Eq. (6.12) to Eq. (6.16).
3 – A covariant derivative that is defined by Eq. (6.22).
It is now easy to use the system Eq. (6.55) to Eq. (6.58) to get all other

features of the Weinberg–Salam model. It considers the “charged currents”
W+ and W− defined by

W+
μ =W 1

μ + iW 2
μ ; W−

μ = −W 1
μ + iW 2

μ ,

W+ =W 1 + iW 2 ; W− = −W 1 + iW 2, (6.74)

4. Since φeR =
√
2(ξe 0) we must use the second equality Eq. (6.66) to get Eq. (6.70).
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where i = σ123 is the generator of the chiral gauge 5 not the i3 of the electric
gauge. We will use Eq. (6.61) and similarly

φ̂pR = φ̂p
1− σ3

2
; φ̂pRσ3 = −φ̂pR, (6.75)

φ̂pL = φ̂p
1 + σ3

2
; φ̂pLσ3 = φ̂pL, (6.76)

φ̂pL − φ̂pR = φ̂pLσ3 + φ̂pRσ3 = (φ̂pL + φ̂pR)σ3 = φ̂pσ3. (6.77)

Then Eq. (6.55) to Eq. (6.58) reads

Dφ̂a = ∇φ̂a + i

2
(g1B − g2W

3)φ̂aR + i
g2
2
W−φ̂pR, (6.78)

Dφ̂p = ∇φ̂p + ig1B(φ̂pR − φ̂pL) +
i

2
(−g1B + g2W

3)φ̂pR − i
g2
2
W+φ̂aR,

(6.79)

Dφ̂n = ∇φ̂n +
i

2
(g1B − g2W

3)φ̂nL +
i

2
g2W

−φ̂eL, (6.80)

Dφ̂e = ∇φ̂e + ig1B(φ̂eL − φ̂eR) +
i

2
(−g1B + g2W

3)φ̂eL − i

2
g2W

+φ̂nL.

(6.81)

The Weinberg–Salam model uses the electromagnetic potential A, a θW
angle and a Z0 term 6 satisfying

g1 =
q

cos(θW )
; g2 =

q

sin(θW )
; q =

e

�c
, (6.82)

−g1B + g2W
3 =
√
g21 + g22Z

0 =
2q

sin(2θW )
Z0, (6.83)

B = cos(θW )A− sin(θW )Z0 ; W 3 = sin(θW )A+ cos(θW )Z0, (6.84)

B + iW 3 = eiθW (A+ iZ0) ; A+ iZ0 = e−iθW (B + iW 3). (6.85)

5. This is another sufficient reason to abandon the formalism of Dirac matrices, which
uses a unique i. It is therefore unable to discriminate between the different gauges at
work.

6. Equation (6.85) indicates that Z0 is similar to Cabibbo–Ferrari’s B of Eq. (4.36).
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Using Eq. (6.77) this gives for the system Eq. (6.78) to Eq. (6.81)

Dφ̂a =∇φ̂a − iq

sin(2θW )
Z0φ̂aR + i

g2
2
W−φ̂pR, (6.86)

Dφ̂p =∇φ̂p − qAφ̂pσ12

+ q tan(θW )Z0φ̂pσ12 + i
q

sin(2θW )
Z0φ̂pR − i

g2
2
W+φ̂aR, (6.87)

Dφ̂e =∇φ̂e + qAφ̂eσ12

− q tan(θW )Z0φ̂eσ12 + i
q

sin(2θW )
Z0φ̂eL − i

g2
2
W+φ̂nL, (6.88)

Dφ̂n =∇φ̂n − iq

sin(2θW )
Z0φ̂nL + i

g2
2
W−φ̂eL. (6.89)

Equation (6.88) contains the first and second terms ∇φ̂ + qAφ̂σ12 of the
Dirac equation, giving the electromagnetic interaction of the electron.
Equation (6.87) contains the first and second terms −∇φ̂+ qAφ̂σ12 of the
Dirac equation for a positron. There is no potential A term in Eq. (6.86)
nor Eq. (6.89), since anti-neutrinos and neutrinos have no electromagnetic
interaction. Since we have

φ̂eσ12 = i(−φ̂eR + φ̂eL), (6.90)
we can read Eq. (6.89) and Eq. (6.88) as
Dφ̂nR = ∇φ̂nR, (6.91)

Dφ̂nL = ∇φ̂nL − i
q

sin(2θW )
Z0φ̂nL + i

q

2 sin(θW )
W−φ̂eL, (6.92)

Dφ̂eR = ∇φ̂eR + qAφ̂eRσ12 + iq tan(θW )Z0φ̂eR, (6.93)

Dφ̂eL = ∇φ̂eL + qAφ̂eLσ12,

+ iq[− tan(θW ) +
1

sin(2θW )
]Z0φ̂eL − i

q

2 sin(θW )
W+φ̂nL. (6.94)

Terms containing W+ and W− which couple left electrons to left neutrinos
generate “charged currents”; terms containing Z0 generate “neutral cur-
rents”. The Z0 boson is linked to φL, φnL and φR, not to φnR. Similarly
we can read Eq. (6.86) and Eq. (6.87) as
Dφ̂aL = ∇φ̂aL, (6.95)

Dφ̂aR = ∇φ̂aR − i
q

sin(2θW )
Z0φ̂aR + i

q

2 sin(θW )
W−φ̂pR, (6.96)

Dφ̂pL = ∇φ̂pL − qAφ̂pLσ12 + iq tan(θW )Z0φ̂pL , (6.97)

Dφ̂pR = ∇φ̂pR − qAφ̂pRσ12

+ iq[− tan(θW ) +
1

sin(2θW )
]Z0φ̂pR − i

q

2 sin(θW )
W+φ̂aR. (6.98)
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Equation (6.95) signifies that the left anti-neutrino does not interact by
electro-weak forces. The electric charge of the positron is opposite to the
charge of the electron. But the comparison with the same relation for the
electron shows that, contrary to what is said about charge conjugation,
thought as changing the sign of any quantum number, only the exchange
between left and right waves plus the multiplication on the right by σ3
give a change of sign. Other coefficients are conserved when passing from
electron to positron or from neutrino to anti-neutrino. Charge conjugation
must be seen as a pure quantum transformation acting only on the wave,
as described 7 in Sec. 3.5. A similar result was obtained by G. Lochak [48]
for the magnetic monopole: charge conjugation does not change the sign
of magnetic charges, and there is no polarization of the vacuum resulting
from spontaneous creation of pairs. It is the same for neutrinos, there is no
creation of pairs of neutrino–anti-neutrino similar to the creation of pairs
of particle–antiparticle with opposite 8 electric charges.

6.2 Invariances

As with electromagnetism, we can enlarge the relativistic invariance to
the greater group Cl∗3 . With the Lorentz dilation R defined by a M element
in Cl∗3 satisfying x �→ x′ =MxM † we have

φ′e =Mφe ; φ′n =Mφn ; φ̂′p = M̂φ̂p ; φ̂′a = M̂φ̂a ; Ψ′ = NΨ

N =

(
M 0

0 M̂

)
; Ñ =

(
M 0

0 M †

)
. (6.99)

We may consider g1B and g2W j , linked to qA, as covariants vectors:

g1B =Mg′1B
′M̂ ; g2W

j =Mg′2W
j ′M̂,

g1B = Ñg′1B
′N ; g2W

j = Ñg′2W
j ′N. (6.100)

This allows D to be a covariant vector, varying as ∇:

D =MD′M̂ ; ∇ =M∇′M̂

D = ÑD′N. (6.101)

That also gives for the Weinberg–Salam angle

B′ + iW ′3 = eiθW (A′ + iZ ′0), (6.102)
7. Furthermore, if we try to build a charge conjugation by changing other signs, we

get instead of Eq. (6.17) relations which do not give a U(1) × SU(2) gauge invariance.
8. This is also consistent with Eq. (4.76) and Eq. (4.77) where charge conjugation in

the neutrino case gives the same wave equation.
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which means that the θW angle is Cl∗3 invariant and therefore is a relativistic
invariant. We get

Dφ̂e =MD′φ̂′e ; Dφ̂n =MD′φ̂′n (6.103)

Dφ̂p =MD′φ̂′p ; Dφ̂a =MD′φ̂′a (6.104)

DΨ = ÑD′Ψ′, (6.105)

and the Cl∗3 invariance of electro-weak interactions is completely similar to
the invariance of electromagnetism.

Operators P0, P1, P2 and P3 are built from projectors and have no
inverse. They are not directly elements of a gauge group. Nevertheless
we can build a Yang–Mills gauge group by using the exponential function.
With four real numbers a0, a1, a2, a3, we define

exp(a0P0) =

∞∑
n=0

(a0P0)
n

n!
, (6.106)

exp(ajPj) =
∞∑

n=0

(a1P1 + a2P2 + a3P3)
n

n!
. (6.107)

We get with Eq. (6.25) and Eq. (6.30) to Eq. (6.33)

exp(a0P0)(Ψ) =

(
exp(a0p0)(φe) exp(a0p0)(φn),

exp(a0p0)(φ̂a)σ1 exp(a0p0)(φ̂p)σ1

)
, (6.108)

exp(a0p0)(φnL) = e−ia0

φnL ; exp(a0p0)(φnR) = φnR, (6.109)

exp(a0p0)(φeL) = e−ia0

φeL ; exp(a0p0)(φeR) = e2ia
0

φeR, (6.110)

exp(a0p0)(φaR) = eia
0

φaR ; exp(a0p0)(φaL) = φaL, (6.111)

exp(a0p0)(φpR) = eia
0

φpR ; exp(a0p0)(φpL) = e−2ia0

φpL, (6.112)

exp(−a0P0) = [exp(a0P0)]
−1. (6.113)

Next we let

a =
√
(a1)2 + (a2)2 + (a3)2 ; S = ajPj , (6.114)

and we get

[exp(S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ) +
sin(a)

a
S(Ψ), (6.115)

[exp(−S)](Ψ) = Ψ + [−1 + cos(a)]P+(Ψ)− sin(a)

a
S(Ψ), (6.116)

which gives

exp(−S) = [exp(S)]−1. (6.117)
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Since P0 commutes with S (see Eq. (6.16)) we get

exp(a0P0 + S) = exp(a0P0) exp(S) = exp(S) exp(a0P0). (6.118)

The set of the operators exp(a0P0 + S) is a U(1)× SU(2) Lie group. The
local gauge invariance under this group comes from the derivation of prod-
ucts. If we use

Ψ′ = [exp(a0P0 + S)](Ψ) ; D = γμDμ, (6.119)

then DμΨ is replaced by D′
μΨ

′ where

D′
μΨ

′ = exp(a0P0 + S)DμΨ, (6.120)

B′
μ = Bμ − 2

g1
∂μa

0, (6.121)

W ′j
μPj =

[
exp(S)W j

μPj − 2

g2
∂μ[exp(S)]

]
exp(−S). (6.122)

6.3 Geometry linked to the wave in space-time algebra

We saw in Sec. 3.3 that the wave of the electron defines at each point of
space-time a geometric transformation Eq. (3.44) from the tangent space-
time of an intrinsic manifold into the tangent space-time to our space-time
manifold. What does this transformation become when we consider the
wave Ψl of an electron-neutrino pair, or the complete wave Ψ of the first
generation? Any element M in Cl3 is sum of a scalar s, a vector �v, a
bivector i �w and a pseudo-scalar ip. We have

M = s+ �v + i �w + ip; M̂ = s− �v + i �w − ip,

M † = s+ �v − i �w − ip; M = s− �v − i �w + ip. (6.123)

With the matrix representation of the space-time algebra studied in Sec.
1.4.1 and theN in Eq. (1.80) we associate to x = xμσμ in Cl3 the space-time
vector

x = xμγμ =

(
0 x

x̂ 0

)
. (6.124)

Then the dilation R defined by Eq. (1.42) associates to the space-time
vector x the space-time vector x′ satisfying

x′ = NxÑ , (6.125)

while the differential operator ∂∂∂ = γμ∂μ satisfies

∂∂∂ = Ñ∂∂∂′N. (6.126)
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Next the dilationD defined by Eq. (3.44) associates to the space-time vector
y, element of the tangent space-time to the intrinsic manifold linked to the
wave, a space-time vector x in the usual space-time, satisfying

x = ΨyΨ̃; Ψ =

(
φ 0

0 φ̂

)
; Ψ̃ =

(
φ 0

0 φ†

)
; y = yμγμ =

(
0 y

ŷ 0

)
. (6.127)

Now we consider the wave of the lepton case Ψl which reads

Ψl =

(
φe φn
φ̂n φ̂e

)
; Ψ̃l =

(
φe φ

†
n

φn φ†e

)
. (6.128)

The generalization of Eq. (6.127) is

x = ΨlyΨ̃l. (6.129)

But, since

x̃ = ΨlyΨ̃l = x, (6.130)

then x is the sum 9 of a scalar, a vector and a pseudo-scalar. To get only a
vector, we must separate the vector part. Denoting the vector part of the
multivector M as 〈M〉1, we then let instead of Eq. (6.129)

x = 〈ΨlyΨ̃l〉1. (6.131)

We have

ΨlyΨ̃l =

(
φe φn
φ̂n φ̂e

)(
0 y

ŷ 0

)(
φe φ

†
n

φn φ†e

)

=

(
φnŷφe + φeyφn φeyφ

†
e + φnŷφ

†
n

φ̂eŷφe + φ̂nyφn φ̂nyφ
†
e + φ̂eŷφ

†
n

)
, (6.132)

which gives

x = 〈ΨlyΨ̃l〉1 =

(
0 x

x̂ 0

)
; x = φeyφ

†
e + φnŷφ

†
n. (6.133)

We let

D = De +Dn ; De(y) = φeyφ
†
e ; Dn(y) = φnŷφ

†
n. (6.134)

De is a direct dilation, conserving the orientation of time and space. Dn

is an inverse dilation, conserving the orientation of time and changing the
orientation of space. The geometric transformation D : y �→ x is the sum
of these two dilations.

9. The same property in Cl3 proves that x is the sum of a scalar and a vector and
this is exact for a space-time vector.
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The element y is independent of the relative observer: if M is any
element of Cl∗3 and N is given by Eq. (1.80), the dilation R defined in
Eq. (1.42) satisfies

x′ =MxM † ; φ′e =Mφe ; φ′n =Mφn, (6.135)

Ψ′
l =

(
φ′e φ

′
n

φ̂′n φ̂′e

)
=

(
Mφe Mφn
M̂φ̂n M̂φ̂e

)
= NΨl, (6.136)

x′ =
(
0 x′

x̂′ 0

)
= NxÑ = N〈ΨlyΨ̃l〉1Ñ = 〈NΨlyΨ̃lÑ〉1

= 〈Ψ′
lyΨ̃

′
l〉1. (6.137)

The non trivial equalities in Eq. (6.137) come from the decomposition of
the sum of a vector and a pseudo-vector in space time which is conserved
when we multiply by N and Ñ . We then have

x = 〈ΨlyΨ̃l〉1 ; x′ = 〈Ψ′
lyΨ̃

′
l〉1 (6.138)

with the same y for the observer of x as for the observer of x′.

6.4 Existence of the inverse

Our study in Sec. 5.2 of systems of electrons has introduced the inverse
φ−1 which is defined only where detφ �= 0. We can see that this condition
is satisfied everywhere for each bound state of the H atom (see Appendix
C). We saw previously that the wave of the electron is a part of the wave
Ψl with value in Cl1,3 which must be also invertible. We must then get
det(Ψl) �= 0.

We have not yet used one of the features of the standard model, because
it was not useful until now: the right part of the neutrino wave does not
interact, and the standard model can do anything without ξn. We can then
suppose

ξ1n = ξ2n = 0. (6.139)

We then have with Eq. (6.2), Eq. (6.3) and Eq. (6.8):

Ψl =
√
2

⎛⎜⎜⎝
ξ1e −η∗2e 0 −η∗2n
ξ2e η∗1e 0 η∗1n
η1n 0 η1e −ξ∗2e
η2n 0 η2e ξ∗1e

⎞⎟⎟⎠ . (6.140)
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We let

ρe = | det(φe)| = 2|ξ1eη∗1e + ξ2eη
∗
2e|, (6.141)

ρL = | det(φL)| ; φL =
√
2

(
η1n η1e
η2n η2e

)
, (6.142)

ρl = [det(Ψl)]
1/2. (6.143)

The calculation of the determinant of the matrix Eq. (6.140) gives the
remarkable result:

ρl =
√
ρ2e + ρ2L. (6.144)

It is then very easy to get an invertible Ψl: it happens as soon as φe is
invertible (for instance everywhere for each bound state of the H atom), or
as soon as ηe and ηn are linearly independent. This is a very interesting
use of the condition ξn = 0, and means that all features of the standard
model are important. It also means that the true mathematical frame is
the Clifford algebras and that the existence of an inverse wave at each point
is physically useful.

6.5 Wave equations

The mass term of the Dirac equation links the right wave to the left
wave, we can read this in Eq. (2.12) and Eq. (2.13). W 1 and W 2 terms
in the electro-weak theory link left waves ηe ηn of the electron and its
neutrino, while B and W 3 terms work separately with left and right waves.
The Weinberg–Salam model takes advantage of the very small mass of the
electron to neglect 10 its mass term. Mass is then missing in Sec. 6.1 to
Sec. 6.4.

When we consider the three spinors, one right and two left ones, nec-
essary to get the gauge group of electro-weak interactions, we have many
more tensorial densities: from 8 × 9/2 = 36 they are now 12 × 13/2 = 78.
Amongst these tensorial densities 6 form 3 complex quantities a, b, c in
the place of a = Ω1 + iΩ2. The identity Eq. (6.144) uses two of these three
terms that, in the case electron+neutrino, replace the unique density ρ in
Eq. (2.33):

a1 = a = det(φe) ; −b = det(φL) ; a2 = −b∗. (6.145)
10. This approximation is a posteriori satisfied by the huge mass of the Z0 which

is 180,000 times the mass of the electron. This approximation was inevitable because
the mass term of the linear Dirac equation cannot be compatible with the electro-weak
gauge.
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The third term a3 = c = 2(ξ1eη
∗
1n + ξ2eη

∗
2n) allows us to build the density

ρρρ =
√
a1a∗1 + a2a∗2 + a3a∗3. (6.146)

This allows a mass term for a wave equation that is both form invariant
and gauge invariant for the Ψl wave of the electron and its neutrino [21]:

Ψ̃l(DΨl)γ012 +mρρρΨ̃lχl = 0, (6.147)

where χl is a term depending on Ψl, defined in Eq. (B.91). For the form
invariance (therefore also for the relativistic invariance) we establish in
Eq. (B.41) the invariance of mρρρ and in Eq. (B.104) and Eq. (B.105) the
invariance of the mass term. The wave equation Eq. (6.147) is then invariant
under the R transformation defined by M in Eq. (1.42) and N in Eq. (1.80).
The wave equation becomes [21]:

Ψ̃′
l(D

′Ψ′
l)γ012 +m′ρρρ′Ψ̃′

lχ
′
l = 0 ; mρρρ = m′ρρρ′ ; Ψ̃′

lχ
′
l = Ψ̃lχl. (6.148)

This wave equation cannot be obtained from the linear Dirac equation
because the relation Eq. (B.91) linking χl to Ψl destroys the linearity of the
equation. Consequently the homogeneous nonlinear equation of chapter 3 is
an obligatory intermediate allowing us to link our extended wave equation
to the Dirac equation: The wave equation Eq. (3.1) is exactly what remains
in Eq. (6.147) when the wave of the neutrino is canceled. And the Dirac
equation is the linear approximation of our Eq. (3.1).

In any domain of the space-time where the wave of the electron is null
or negligible ρρρ = 0 then the wave equation of the neutrino is reduced to
∇ηn = 0 which is the wave equation of the usual neutrino, that moves with
the velocity of light. This wave is without interaction, since the neutrino
interacts only with the electron and its φe wave.

Under the gauge transformation defined by Eq. (6.119) to Eq. (6.122)
we get (a detailed calculation is in B.3):

Ψ̃′
l(D

′Ψ′
l)γ012 +mρρρΨ̃′

lχ
′
l = 0. (6.149)

A detailed calculation of Eq. (6.147) shows that two of the 16 numeric equa-
tions are cancelled, and only two of the 14 numeric equations are simple:
the real part is L = 0 where L is the Lagrangian density giving Eq. (6.147).
Then a double link exists, like in the case of the electron alone, between the
wave equation and the Lagrangian density: this density is the real scalar
part of the wave equation, and this wave equation may be obtained from
this density by the variational calculus. This double link may be considered
as the true reason for the presence in quantum physics of the variational
calculus. The other simple equation is the conservation of the current [21]:

∂μJ
μ = 0 ; J = D0 +Dn ; D0 = φeφ

†
e ; Dn = φnφ

†
n. (6.150)
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The wave of the pair electron+neutrino may then be normalized. But the
interpretation of this density of probability as a probability of presence
of the particle is impossible since the density uses both the wave of the
electron and the wave of the neutrino. We shall see in chapter 9 where the
density of probability comes from.
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Chapter 7

Electro-weak and strong interactions

We extend the gauge invariance to the quark sector, using Cl1,5. We

present in this frame the SU(3) group of chromodynamics. We study

the geometric transformation generated by the complete wave. We get

another remarkable identity which makes the complete wave invertible.

We get a wave equation with mass term that is form invariant and gauge

invariant under the gauge group of the standard model.

7.1 Electro-weak interactions: the quark sector

For the first generation of fundamental fermions the standard model
includes 16 fermions, 8 particles and their antiparticles. We studied pre-
viously the case of the electron, its neutrino, its antiparticle the positron
and its anti-neutrino. We put these waves into a unique wave Ψl. Each
generation includes also two quarks with three states, so we get six waves
similar to φe or φn. Quarks of the first generation are named u and d
and the couple d–u is similar to n–e for electro-weak interactions but with
differences since the electric charge of u is 2

3 |e| while the charge of d is
− 1

3 |e|. Similarly to the lepton sector, the electric charges of antiparticles
are opposite to charges of particles. Three states of “color” are named r,
g, b (red, green, blue). So we build a wave with all fermions of the first
generation as

Ψ =

(
Ψl Ψr

Ψg Ψb

)
, (7.1)

where Ψl is defined by Eq. (6.8) and Ψr, Ψg, Ψb are defined on the same
model:

Ψr =

(
φdr φur
φ̂urσ1 φ̂drσ1

)
=

(
φdr φur
φ̂ur φ̂dr

)
, (7.2)

93
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Ψg =

(
φdg φug
φ̂ugσ1 φ̂dgσ1

)
=

(
φdg φug
φ̂ug φ̂dg

)
, (7.3)

Ψb =

(
φdb φub
φ̂ubσ1 φ̂dbσ1

)
=

(
φdb φub
φ̂ub φ̂db

)
. (7.4)

The wave is a function of space-time with value into Cl1,5 which is a sub-
algebra of Cl5,2 =M8(C) (see Sec. 1.5). As previously, electro-weak inter-
actions are obtained by replacing partial derivatives with covariant deriva-
tives. Now we use the notation of Sec. 1.5 and let

W j = LμW j
μ, j = 1, 2, 3 ; D = LμDμ ; L0 = L0 ; Lj = −Lj, (7.5)

for j = 1, 2, 3. The covariant derivative reads now

D(Ψ) = ∂(Ψ) +
g1
2
B P 0(Ψ) +

g2
2
W jP j(Ψ). (7.6)

We use two projectors P± satisfying

P±(Ψ) =
1

2
(Ψ ± iΨL21) ; i = L0123. (7.7)

Three operators act on the quark sector as on the lepton sector :

P 1(Ψ) = P+(Ψ)L35, (7.8)

P 2(Ψ) = P+(Ψ)L5012, (7.9)

P 3(Ψ) = P+(Ψ)L0132. (7.10)

The fourth operator acts differently on the lepton wave and on the quarks:

P 0(Ψ) =

(
P0(Ψl) P ′

0(Ψr)

P ′
0(Ψg) P

′
0(Ψb)

)
, (7.11)

P0(Ψl) = Ψlγ21 + P−(Ψl)i = Ψlγ21 +
1

2
(Ψli+ iΨlγ30), (7.12)

P ′
0(Ψr) = −1

3
Ψrγ21 + P−(Ψr)i = −1

3
Ψrγ21 +

1

2
(Ψri+ iΨrγ30). (7.13)

This is very important: first the value −1/3 shall give the four correct values
of the charges of quarks and antiquarks. Next if all four operators were
identical we should get four states and an SU(4) group for chromodynamics
and the electron should be sensitive to strong interactions. Since only three
parts of the wave are similar, we will get in the next paragraph an SU(3)
group for chromodynamics. Now we get two identical formulas by replacing
the r index by g and b. We can abbreviate and we remove indices r, g, b
to study the electro-weak covariant derivative. We let

P ′
0(Ψ) =

(
p′0(φd) p′0(φu)
p′0(φ̂u)σ1 p′0(φ̂d)σ1

)
, (7.14)
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which gives with Eq. (7.13):

P ′
0(Ψ) =− i

3

(
φdσ3 φuσ3

−φ̂uσ3σ1 −φ̂dσ3σ1

)

+
i

2

(
φd −φu
φ̂uσ1 −φ̂dσ1

)
+
i

2

(
φdσ3 −φuσ3
φ̂uσ3σ1 −φ̂dσ3σ1

)
. (7.15)

We then get the system :

p′0(φd) =− i

3
φdσ3 +

i

2
φd +

i

2
φdσ3 =

i

3
(2φdR + φdL),

p′0(φu) =− i

3
φuσ3 − i

2
φu − i

2
φuσ3 =

i

3
(−4φuR + φuL),

p′0(φ̂u) =
i

3
φ̂uσ3 +

i

2
φ̂u +

i

2
φ̂uσ3 =

i

3
(4φ̂uL − φ̂uR), (7.16)

p′0(φ̂d) =
i

3
φ̂dσ3 −

i

2
φ̂d −

i

2
φ̂dσ3 =

i

3
(−2φ̂dL − φ̂dR).

Since P1, P2 and P3 are unchanged in the quark sector, we get from
Eq. (6.41), Eq. (6.43) and Eq. (6.45)
p1(φd) = iφuL; p1(φu) = iφdL; p1(φ̂u) = −iφ̂dR; p1(φ̂d) = −iφ̂uR, (7.17)

p2(φd) = φuL; p2(φu) = −φdL; p2(φ̂u) = −φ̂dR; p2(φ̂d) = φ̂uR, (7.18)

p3(φd) = −iφdL; p3(φu) = iφuL; p3(φ̂u) = −iφ̂uR; p3(φ̂d) = iφ̂dR. (7.19)
Now Eq. (7.6) gives

DΨr = ∂∂∂Ψr +
g1
2
BP ′

0(Ψr) +
g2
2
WjPj(Ψr), (7.20)

and we get, similarly to Eq. (6.47) to Eq. (6.50)

Dφ̂u = ∇φ̂u +
g1
2
Bp′0(φ̂u) +

g2
2
W jpj(φ̂u), (7.21)

Dφ̂d = ∇φ̂d +
g1
2
Bp′0(φ̂d) +

g2
2
W jpj(φ̂d), (7.22)

D̂φd = ∇̂φd + g1
2
B̂p′0(φd) +

g2
2
Ŵ jpj(φd), (7.23)

D̂φu = ∇̂φu +
g1
2
B̂p′0(φu) +

g2
2
Ŵ jpj(φu). (7.24)

With Eq. (7.16) to Eq. (7.19) this gives

Dφ̂u = ∇φ̂u +
g1
2
B
i

3
(4φ̂uL − φ̂uR)

+
g2
2
[W 1(−iφ̂dR) +W 2(−φ̂dR) +W 3(−iφ̂uR)], (7.25)

Dφ̂d = ∇φ̂d +
g1
2
B
i

3
(−2φ̂dL − φ̂dR)

+
g2
2
[W 1(−iφ̂uR) +W 2φ̂uR) +W 3iφ̂dR], (7.26)
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D̂φd = ∇̂φd + g1
2
B̂
i

3
(2φdR + φdL)

+
g2
2
[Ŵ 1(iφuL) + Ŵ 2(φuL) + Ŵ 3(−iφdL)], (7.27)

D̂φu = ∇̂φu +
g1
2
B̂
i

3
(−4φuR + φuL)

+
g2
2
[Ŵ 1(iφdL) + Ŵ 2(−φdL) + Ŵ 3(iφuL)]. (7.28)

We separate right and left waves, this gives

Dφ̂uL = ∇φ̂uL − i(−2

3
)g1Bφ̂uL; Dμηu = ∂μηu − i(−2

3
)g1Bμηu, (7.29)

Dφ̂dL = ∇φ̂dL − i(+
1

3
)g1Bφ̂dL; Dμηd = ∂μηd − i(+

1

3
)g1Bμηd, (7.30)

D̂φdR = ∇̂φdR − i(−1

3
)g1B̂φdR; Dμξd = ∂μξd − i(−1

3
)g1Bμξd, (7.31)

D̂φuR = ∇̂φuR − i(+
2

3
)g1B̂φuR; Dμξu = ∂μξu − i(+

2

3
)g1Bμξu. (7.32)

Comparison with Sec. 6.1 shows that quarks and anti-quarks have prede-
termined electric charges: − 2

3 |e| for anti-quark u, + 1
3 |e| for anti-quark d,

+ 2
3 |e| for the u quark and − 1

3 |e| for 1 the d quark. Separation of right and
left waves from Eq. (7.25) to Eq. (7.28) gives also

Dφ̂uR = ∇φ̂uR − i
g1
6
Bφ̂uR +

g2
2
[−iW 1φ̂dRW

2φ̂dR − iW 3φ̂uR], (7.33)

Dφ̂dR = ∇φ̂dR − i
g1
6
Bφ̂dR +

g2
2
[−iW 1φ̂uR +W 2φ̂uR) + iW 3φ̂dR], (7.34)

D̂φdL = ∇̂φdL + i
g1
6
B̂φdL +

g2
2
[iŴ 1φuL + Ŵ 2φuL − iŴ 3φdL], (7.35)

D̂φuL = ∇̂φuL + i
g1
6
B̂φuL +

g2
2
[iŴ 1φdL − Ŵ 2φdL + iŴ 3φuL]. (7.36)

Using the conjugation φ �→ φ̂ we get

D̂φuR = ∇̂φuR + i
g1
6
B̂φuR +

g2
2
[+iŴ 1φdR − Ŵ 2φdR + iŴ 3φuR], (7.37)

D̂φdR = ∇̂φdR + i
g1
6
B̂φdR +

g2
2
[+iŴ 1φuR + Ŵ 2φuR)− iŴ 3φdR], (7.38)

Dφ̂dL = ∇φ̂dL − i
g1
6
Bφ̂dL +

g2
2
[−iW 1φ̂uL +W 2φ̂uL + iW 3φ̂dL], (7.39)

Dφ̂uL = ∇φ̂uL − i
g1
6
Bφ̂uL +

g2
2
[−iW 1φ̂dL −W 2φ̂dL − iW 3φ̂uL]. (7.40)

1. Another mechanism giving the ± e
3

and ± 2e
3

charges of quarks was proposed in
Sec. 5.3 of [15].
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This gives a left doublet of particles and a right doublet of antiparticles.
With Eq. (6.72) and

ψL =

(
ηu
ηd

)
; ψR =

(
ξu
ξd

)
, (7.41)

we get
DμψL = ∂μψL − i

g1
6
BμψL − i

g2
2
(Wμ1τ1 +Wμ2τ2 +Wμ3τ3)ψL, (7.42)

DμψR = ∂μψR + i
g1
6
BμψR − i

g2
2
(Wμ1τ1 −Wμ2τ2 +Wμ3τ3)ψR. (7.43)

We can then say that charge conjugation not only changes the signs of
electric charges, but also the right and the left waves. It also changes the
orientation of the space of the τj , where a direct basis (τ1, τ2, τ3), is replaced
by an inverse basis (τ1, −τ2, τ3). We encounter this basis both here and in
the wave of an antiparticle Eq. (4.64) used by de Broglie.

7.2 Chromodynamics

We start from generators of the SU(3) gauge group of chromodynamics

λ1 =

⎛⎝0 1 0

1 0 0

0 0 0

⎞⎠ , λ2 =

⎛⎝0 −i 0
i 0 0

0 0 0

⎞⎠ , λ3 =

⎛⎝1 0 0

0 −1 0

0 0 0

⎞⎠ ,
λ4 =

⎛⎝0 0 1

0 0 0

1 0 0

⎞⎠ , λ5 =

⎛⎝0 0 −i
0 0 0

i 0 0

⎞⎠ , λ6 =

⎛⎝0 0 0

0 0 1

0 1 0

⎞⎠ ,
λ7 =

⎛⎝0 0 0

0 0 −i
0 i 0

⎞⎠ , λ8 =
1√
3

⎛⎝1 0 0

0 1 0

0 0 −2

⎞⎠ . (7.44)

To simplify notations we use now l, r, g, b instead of Ψl, Ψr, Ψg, Ψb. So

we have Ψ =

(
l r

g b

)
. Then this gives

λ1

⎛⎝rg
b

⎞⎠ =

⎛⎝gr
0

⎞⎠ , λ2
⎛⎝rg
b

⎞⎠ =

⎛⎝−ig
ir

0

⎞⎠ , λ3
⎛⎝rg
b

⎞⎠ =

⎛⎝ r

−g
0

⎞⎠ ,
λ4

⎛⎝rg
b

⎞⎠ =

⎛⎝b0
r

⎞⎠ , λ5
⎛⎝rg
b

⎞⎠ =

⎛⎝−ib
0

ir

⎞⎠ , λ6
⎛⎝rg
b

⎞⎠ =

⎛⎝0

b

g

⎞⎠ , (7.45)

λ7

⎛⎝rg
b

⎞⎠ =

⎛⎝ 0

−ib
ig

⎞⎠ , λ8
⎛⎝rg
b

⎞⎠ =
1√
3

⎛⎝ r

g

−2b

⎞⎠ .
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We name Γk the operators corresponding to λk acting on Ψ. We get with
projectors Eq. (1.93):

Γ1(Ψ) =
1

2
(L4ΨL4 + L01235ΨL01235) =

(
0 g

r 0

)
, (7.46)

Γ2(Ψ) =
1

2
(L5ΨL4 − L01234ΨL01235) =

(
0 −ig

ir 0

)
, (7.47)

Γ3(Ψ) = P+ΨP− − P−ΨP+ =

(
0 r

−g 0

)
, (7.48)

Γ4(Ψ) = L01253ΨP
− =

(
0 b

0 r

)
; Γ5(Ψ) = L01234ΨP

− =

(
0 −ib

0 ir

)
, (7.49)

Γ6(Ψ) = P−ΨL01253 =

(
0 0

b g

)
; Γ7(Ψ) = −iP−ΨL4 =

(
0 0

−ib ig

)
, (7.50)

Γ8(Ψ) =
1√
3
(P−ΨL012345 + L012345ΨP

−) =
1√
3

(
0 r

g −2b

)
. (7.51)

Everywhere the upper left term is 0, so all Γk project the wave Ψ on its
quark sector.

We can extend the covariant derivative of electro-weak interactions
Eq. (7.6):

D(Ψ) = ∂(Ψ) +
g1
2
B P 0(Ψ) +

g2
2
W jP j(Ψ) +

g3
2
GkiΓk(Ψ), (7.52)

where g3 is another constant and Gk are eight terms called “gluons”. Since
I4 commute with any element of Cl1,3 and since Pj(iΨind) = iPj(Ψind)

for j = 0, 1, 2, 3 and ind = l, r, g, b each operator iΓk commutes with all
operators P j .

Now we use 12 real numbers a0, aj , j = 1, 2, 3 and bk, k = 1, 2, ..., 8.
We let

S1 =

j=3∑
j=1

ajP j ; S2 =

k=8∑
k=1

bkiΓk, (7.53)

and we get, using exponentiation (see Sec. 6.2)

exp(a0P 0 + S1 + S2) = exp(a0P 0) exp(S1) exp(S2) (7.54)

The set of these operators is a U(1)× SU(2)× SU(3) Lie group. The only
difference with the standard model is that the structure of this group is not
postulated but calculated. The invariance under Cl∗3 (and in particular the
relativistic invariance) of this covariant derivative is similar to Eq. (6.105)
with underlined terms. The gauge invariance reads with

Ψ′ = [exp(a0P 0 + S1 + S2)](Ψ) ; D = LμDμ ; D′ = LμD′
μ, (7.55)
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D′
μΨ

′ = exp(a0P 0 + S1 + S2)DμΨ, (7.56)

B′
μ = Bμ − 2

g1
∂μa

0, (7.57)

W ′j
μP j =

[
exp(S1)W

j
μP j −

2

g2
∂μ[exp(S1)]

]
exp(−S1), (7.58)

G′k
μiΓk =

[
exp(S2)G

k
μiΓk − 2

g3
∂μ[exp(S2)]

]
exp(−S2). (7.59)

The SU(3) group generated by operators projecting on the quark sector
acts only on this sector of the wave:

P+[exp(bkiΓk](Ψ)P+ = P+ΨP+ =

(
Ψl 0

0 0

)
. (7.60)

We get then a U(1) × SU(2) × SU(3) gauge group for a wave including
all fermions of the first generation. This group acts on the lepton sector
only by its U(1)× SU(2) part. The physical translation is: leptons do not
strongly interact, they have only electromagnetic and weak interactions.
This is fully satisfied in experiments. The novelty here is that this comes
from the structure itself of the quantum wave. Since it is independent of
the energy scale, we understand why great unified theories do not work.

7.3 Three generations, four neutrinos

The aim of theoretical physics is to understand experimental facts. To-
day we have to understand both why we get only three kinds of leptons and
quarks and a fourth neutrino, without electro-weak interactions. Actual ex-
periments show both the limitation to three kinds of light leptons from the
study of the Z0 and the possible existence of a fourth neutrino without
electro-weak interactions. We explained the existence of three kinds of lep-
tons in chapter 5. This is easily generalized to the three generations of the
standard model. Two other generations are gotten by replacing the privi-
leged third direction σ3 by σ1 or σ2, everywhere this direction is used. The
passage from one to another generation must be seen as a circular permu-
tation of indices 1 �→ 2 �→ 3 �→ 1 or 1 �→ 3 �→ 2 �→ 1 for the other. For
instance the σ3 in Eq. (6.11) which defines left and right projectors must
be replaced by σ1 or σ2. The σ1 in Eq. (6.8) which links the wave of the
particle to the wave of the antiparticle must be replaced by σ2 or σ3. These
changes imply that each generation should be treated separately and it is
the reason for this separate treatment in the standard model. Now for a
fourth generation we have no other similar possibility since the Cl3 algebra
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is based on the 3-dimensional physical space. We cannot get a fourth set
of operators similar to the Pμ.

But the existence of a fourth neutrino [20] is possible because Cl3 has
four generators with square −1. The wave equation of the electron includes
one of these four generators, iσ3 = σ12. Now iσ1 = σ23 and iσ2 = σ31
explain why two other kinds of leptons exist. We can also build an invariant
wave equation with the fourth generator, i = σ123:

φ(∇φ̂)σ123 +mρ = 0. (7.61)

Multiplying on the left by φ
−1

we get with ρ = e−iβφφ the equivalent
equation

∇φ̂i+me−iβφ = 0 ; ∇φ̂ = ime−iβφ. (7.62)

Contrary to our homogeneous non-linear wave equation Eq. (3.1) which
has the Dirac equation as linear approximation, this wave equation cannot
come from linear quantum theory: it has no linear approximation because
the β angle is not small, it is now the angle of the phase 2 of the wave. We
can nevertheless get plane waves. We search now solutions satisfying

φ = e−iϕφ0 ; ϕ = mvμx
μ ; v = σμvμ, (7.63)

where v is a fixed reduced speed and φ0 is also a fixed term. We get:

∇φ̂ = σμ∂μ(e
iϕφ̂0) = imveiϕφ̂0. (7.64)

And we have

φφ = e−iϕφ0e
−iϕφ0 = e−2iϕφ0φ0. (7.65)

Then if we let

φ0φ0 = ρ0e
iβ0 , (7.66)

we get

β = β0 − 2ϕ ; e−iβφ = e−i(β0−2ϕ)e−iϕφ0 = e−i(β0−ϕ)φ0. (7.67)

Then Eq. (7.61) is equivalent to

imveiϕφ̂0 = ime−i(β0−ϕ)φ0 (7.68)

vφ̂0 = e−iβ0φ0

eiβ0vφ̂0 = φ0. (7.69)

2. This is another reason to think that the homogeneous non-linear equation is better
than its linear approximation.
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Conjugating, we get

e−iβ0 v̂φ0 = φ̂0. (7.70)

So we get

φ0 = eiβ0vφ̂0 = eiβ0v[e−iβ0 v̂φ0] = vv̂φ0. (7.71)

Then if φ0 �= 0 we get

1 = vv̂ (7.72)

which gives Eq. (3.30). Since Eq. (7.70) implies Eq. (3.33) we get the
same results as with our non-linear wave equation: existence of plane waves
with only positive energy. Developing Eq. (7.61) we get a system of eight
equations similar to the system Eq. (2.75) to Eq. (2.82) and four of these
equations are the conservation of theDμ currents (∂νDν

μ = 0) [20]. Then the
density of probability is conservative and there is no possible disintegration
of such a particle. Without a set of operators Pμ there are no electro-weak
forces. Therefore only gravitational interactions remain possible. Such an
object could be a part 3 of the dark 4 matter.

7.4 Geometric transformation linked to the complete wave

The complete wave Ψ containing the wave of leptons and quarks of the
first generation defined in Eq. (7.1) satisfies (the proof is in Appendix A)

Ψ̃ =

(
Ψ̃b Ψ̃r

Ψ̃g Ψ̃l

)
. (7.73)

The wave has value in the Clifford algebra Cl1,5. Each element reads

Ψ =

n=6∑
n=0

Ψn, (7.74)

where 〈Ψ〉n = Ψn is named an n-vector. The reverse satisfies

Ψ̃ = Ψ0 +Ψ1 −Ψ2 − Ψ3 +Ψ4 +Ψ5 −Ψ6. (7.75)

We define the v-part Av of any multivector A as the sum of the vectorial
part and of the pseudo-vectorial part in the complete space-time:

Av = A1 +A5, (7.76)
3. The fourth neutrino, insensitive to weak interactions, is not forbidden by the dis-

integrating Z0, that gives a maximum of three weakly interacting light neutrinos.
4. The fourth neutrino is its own anti-particle, because the charge conjugation

Eq. (2.96) does not change the differential term.
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because it is this vectorial part which replaces in Cl1,5 the vectorial part
〈M〉1 of the space-time algebra. It is linked to the fact that vectors of
Cl1,5 are 5-vectors of Cl5,1 and vice-versa. We should then get the same
definition of the vectorial part by using Cl5,1. We use

xv = xnLn + xn5LnL012345 ; yv = ynLn + yn5LnL012345, (7.77)

Mv =M1 +M5 (7.78)

xv = 2(ΨyvΨ̃)v ; x = xμσμ ; x = xμγμ. (7.79)

The transformation linked to the wave reads

f : yv �→ xv = 2(ΨyvΨ̃)v. (7.80)

Contrary to the R dilation obtained in the case electron+neutrino , where
the usual space-time acts alone, the f transformation is a transformation
from the sub-space of Mv into the same subspace of the usual manifold.
We get

xv =

(
0 x2
x1 0

)
; yv =

(
0 y2
y1 0

)
(7.81)

x1 = 2(Ψby1Ψ̃b +Ψgy2Ψ̃g) (7.82)

x2 = 2(Ψry1Ψ̃r +Ψly2Ψ̃l). (7.83)

Next we let

x1 = x+ x5 + x4 + x45 + (x5 + x55)i (7.84)

x2 = x− x5 − x4 + x45 + (x5 − x55)i (7.85)

y1 = y + y5 + y4 + y45 + (y5 + y55)i (7.86)

y2 = y − y5 − y4 + y45 + (y5 − y55)i (7.87)

that finally gives

x = φe(y − y5)φ
†
e + φn(ŷ − ŷ5)φ

†
n + 2�{φeφ†n[−y4 + y45 + (y5 − y55)i]}

+ φdr(y + y5)φ
†
dr + φur(ŷ + ŷ5)φ

†
ur + 2�{φdrφ†ur[y4 + y45 + (y5 + y55)i]}

+ φdg(y − y5)φ
†
dg + φug(ŷ − ŷ5)φ

†
ug + 2�{φdgφ†ug [−y4 + y45 + (y5 − y55)i]}

+ φdb(y + y5)φ
†
db + φub(ŷ + ŷ5)φ

†
ub + 2�{φdbφ†ub[y4 + y45 + (y5 + y55)i]}.

(7.88)

This equality is a generalization of Eq. (6.133) obtained in the case elec-
tron+neutrino. We may remark that the supplementary dimensions are
mixed with the ordinary dimensions. We may also remark that the trans-
formation is linear in y.
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7.4.1 Invariance

The dilation R induced by any element M of Cl3 satisfying Eq. (1.42)
reads in space-time algebra, with the N of Eq. (1.80):

x′ = NxÑ ; x =

μ=3∑
μ=0

xμγμ ; x′ =
μ=3∑
μ=0

x′μγμ ; Ψ′
l = NΨl, (7.89)

and we need the same transformation for the waves of quarks:

Ψ′
r = NΨr ; Ψ′

g = NΨg ; Ψ′
b = NΨb. (7.90)

We let

N =

(
N 0

0 N

)
=

⎛⎜⎜⎜⎝
M 0 0 0

0 M̂ 0 0

0 0 M 0

0 0 0 M̂

⎞⎟⎟⎟⎠ . (7.91)

We then get

Ñ =

(
Ñ 0

0 Ñ

)
=

⎛⎜⎜⎝
M 0 0 0

0 M † 0 0

0 0 M 0

0 0 0 M †

⎞⎟⎟⎠ . (7.92)

With

x′v =

(
0 x′2
x′1 0

)
; x′ = x′μγμ ; x′

5 = x′μ5γμ, (7.93)

x′1 = x′ + x′
5 + x′4 + x′45 + (x′5 + x′55)i, (7.94)

x′2 = x′ − x′
5 − x′4 + x′45 + (x′5 − x′55)i, (7.95)

the generalization of Eq. (6.135) and Eq. (6.136) in Cl1,5 reads

x′v = NxvÑ ; Ψ′ = NΨ, (7.96)

which gives

Ψ̃′ = ÑΨ = Ψ̃Ñ. (7.97)

Then the first equality Eq. (7.96) is equivalent to the system:

x′ + x′45 + x′5i = N(x+ x45 + x5i)Ñ , (7.98)

x′
5 + x′4 + x′55i = N(x5 + x4 + x55i)Ñ . (7.99)
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And since we can separate the different multivector parts, this is equivalent
to the system:

x′ = NxÑ , (7.100)

x′
5 = Nx5Ñ , (7.101)

x′45 + x′5i = (x45 + x5i)NÑ, (7.102)

x′4 + x′55i = (x4 + x55i)NÑ. (7.103)
With Eq. (1.43) these two last equalities read

x′45 + ix′5 = reiθ(x45 + ix5), (7.104)

x′4 + ix′55 = reiθ(x4 + ix55). (7.105)
This separation between the different components of the global space-time
explains why we usually see only the real components of the 4-dimensional
space-time vector x. Only the usual space-time has real components. Equa-
tion (7.104) and Eq. (7.105) indicates both that these two supplementary
dimensions act as complex dimensions and that they separate completely
the usual space-time in the global space-time. A space-time with one or two
supplementary conditions has been used as early as [59]. The problem was
always to explain why classical physics does not see these supplementary
dimensions. Here this problem is automatically solved by the difference
coming from the invariance group of physical laws.

The form invariance of the geometric transformation f results from
Eq. (7.96) and Eq. (7.97) which give

f : yv �→ xv = (ΨyvΨ̃)v (7.106)

f : yv �→ x′v = (Ψ′yvΨ̃′)v = (NΨyvΨ̃Ñ)v

= N(ΨyvΨ̃)vÑ = NxvÑ. (7.107)
Similarly to what we said in Sec. 3.3, yv is independent of the observer and
intrinsic to the wave.

7.5 Existence of the inverse

To extend the complete wave to a system we need the inverse Ψ−1, and
we are not in a field, only in an algebra, where the inverse does not always
exist. The standard model uses only left waves for the quarks. We get then
for the color r:

Ψr =
√
2

⎛⎜⎜⎝
0 −η∗2dr 0 −η∗2ur
0 η∗1dr 0 η∗1ur

η1ur 0 η1dr 0

η2ur 0 η2dr 0

⎞⎟⎟⎠ , (7.108)
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and two similar equalities for colors g and b. Now we consider two matrices:

L =
√
2

⎛⎜⎜⎝
η1e η1n η1dr η1ur
η2e η2n η2dr η2ur
η1dg η1ug η1db η1ub
η2dg η2ug η2db η2ub

⎞⎟⎟⎠ ;M =
√
2

⎛⎜⎜⎝
−ξ∗2e η1e η1dr η1ur
ξ∗1e η2e η2dr η2ur
0 η1dg η1db η1ub
0 η2dg η2db η2ub

⎞⎟⎟⎠ . (7.109)

We get the remarkable identity

det(Ψ) = | det(L)|2 + | det(M)|2. (7.110)

We can then see the waves of the standard model as having the maximum
number of degrees of freedom compatible with the existence of an inverse
wave Ψ−1.

In the M matrix in Eq. (7.109) the g color is less present than the other
colors b and g. This seems abnormal. Technically the reason is simple:
since the only right term ξe is on the same column as the ug wave, when we
suppress all terms of one column or all terms of one line in the calculation
of a determinant the ug term necessarily disappears.

Here the main mathematical tool is Clifford algebra and not complex
matrix algebra. The space-time algebra is not identical to the algebra of
4× 4 complex matrices. The Cl1,5 algebra of the 6-dimensional space-time
is not identical to the algebra of 8 × 8 complex matrices. We encounter
only sub-algebras, moreover not as complex algebras but as real algebras.
The use of complex matrices is somewhere based on a kind of mathematical
accident, a fortuitous coincidence: the identification between the Clifford
algebra of the physical space and the algebra of 2 × 2 complex matrices,
even if it is only as algebras on the real field.

For instance a consequence is that Ψ matrices are not at all symmetric.
Zero terms are in columns, not in lines. Lines 1, 2 and 5, 6 of the Ψ matrix
are multiplied by M while line 3,4 and 7, 8 are multiplied on the contrary
by M̂ when we get the form invariance. We may also remark that all terms
of L and M matrices in Eq. (7.109) are left terms, multiplied by M̂ in
the form invariance. When we look at operators in the electro-weak gauge
group we see that they operate on columns of matrices, not on lines.

Another consequence: to take the adjoint is not an important trans-
formation. This should be the case if the theory of hermitian and unitary
matrices is fundamental. The main transformation, that we use again and
again all over this book, is the reversion (A �→ Ã). This reversion is defined
in any Clifford algebra. It is this reversion and nothing else that appears in
calculations. It happens that the reversion is equivalent to take the adjoint
in space algebra, and only in space algebra. Both in the space-time algebra
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and in the algebra of 6-dimensional space-time the reversion is not equiva-
lent to taking the adjoint and it uses also an exchange between the matrix
bloc up-left and the matrix bloc down-right while the two other blocs re-
main at their places because they are twice exchanged. If the SU(3) that
exchanges the r, g, b color states was fundamentally unitary it should be
effectively necessary for the green color to play exactly the same role as the
red and blue colors.

And since this is not exactly true we see that the unitarity of the U(1)×
SU(2)×SU(3) structure is largely accidental from the mathematical point
of view, which means that it does not imply the necessity of unitary groups.
The main structure is the Cl1,5 algebra and its multiplicative left and right
automorphisms.

7.6 Wave equation with mass term

The wave equation [22]
0 = (DΨ)L012 +M, (7.111)

has for mass term

M =

(
m2ρ2χb m2ρ2χg

m2ρ2χr m1ρ1χl

)
, (7.112)

with the aj defined from the Ψl and sj in Eq. (B.168) to Eq. (B.182) and

ρ21 = a1a
∗
1 + a2a

∗
2 + a3a

∗
3 ; ρ22 =

j=15∑
j=1

sjs
∗
j . (7.113)

Since only the U(1) × SU(2) part of the gauge group acts on the elec-
tron+neutrino wave, the wave equation acts separately in a lepton part
and a quark part:

0 = (DΨl)L012 +m1ρ1

(
0 0

0 χl

)
; Ψl =

(
Ψl 0

0 0

)
, (7.114)

0 = (DΨc)L012 +m2ρ2χ
c; χc =

(
χb χg

χr 0

)
; Ψc =

(
0 Ψr

Ψg Ψb

)
. (7.115)

The χc, c = r, g, b are defined in Eq. (B.184) to Eq. (B.186). The wave
equation Eq. (7.114) is equivalent to

DΨlγ012 +m1ρ1χl = 0 ; γ012 = γ0γ1γ2, (7.116)
which is the equation that we have previously studied, with m1 = m,
ρ1 = ρρρ. This wave equation is equivalent to the invariant form:

Ψ̃l(DΨl)γ012 +m1ρ1Ψ̃lχl = 0 ; Ψ̃l =

(
φe φ

†
n

φn φ†e

)
. (7.117)
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We want to establish the double link between the lagrangian density and
the wave equation for the complete wave equation Eq. (7.117). We shall use
only this: the real part of the invariant equation is the sum of the lepton
term previously studied and the corresponding term for the quark part of
the wave equation. This one is equivalent to the invariant form:

0 = Ψ̃c(DΨc)L012 +m2ρ2Ψ̃
cχc, (7.118)

Ψ̃c =

(
Ψ̃b Ψ̃r

Ψ̃g 0

)
; χc =

(
χb χg

χr 0

)
. (7.119)

From the covariant derivative Eq. (7.52), with the P j operators in Eq. (7.7)
to Eq. (7.13), the Γk in Eq. (7.46) to Eq. (7.51) and with Ψc in Eq. (7.115)
we get

DΨc =

(
Ag Ab

0 Ar

)
, (7.120)

Ag = ∂∂∂Ψg − g1
6
BΨgγ21 +

g2
2
(W1Ψgγ3i+W2Ψgγ3 −W3Ψgi)

+
g3
2
(G1iΨr −G2Ψr −G3iΨg +G6iΨb +G7Ψb +

1√
3
G8iΨg),

(7.121)

Ab = ∂∂∂Ψb − g1
6
BΨbγ21 +

g2
2
(W1Ψbγ3i+W2Ψbγ3 −W3Ψbi)

+
g3
2
(G4iΨr −G5Ψr +G6iΨg −G7Ψg − 2√

3
G8iΨb), (7.122)

Ar = ∂∂∂Ψr − g1
6
BΨrγ21 +

g2
2
(W1Ψrγ3i+W2Ψrγ3 −W3Ψri)

+
g3
2
(G1iΨg +G2Ψg +G3iΨr +G4iΨb +G5Ψb +

1√
3
G8iΨr).

(7.123)
Next we get

Ψ̃c(DΨc)L012 +m2ρ2Ψ̃
cχc

=

(
Ψ̃b(Abγ012 +m2ρ2χb) + Ψ̃r(Arγ012 +m2ρ2χr) Ψ̃b(Agγ012 +m2ρ2χg)

Ψ̃g(Abγ012 +m2ρ2χb) Ψ̃g(Agγ012 +m2ρ2χg)

)
(7.124)

The calculation of the Lagrangian density for the complete equation is
similar to the calculation in the electron+neutrino case. We have

L = Ll + Lc (7.125)

Lc =
∑

c=r,g,b

L0c + g1
∑

c=r,g,b

L1c + g2
∑

c=r,g,b

L2c + g3L3 +m2ρ2. (7.126)
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The calculation of Ljc, for j = 0, 1, 2, replaces the e-n pair by the dc-uc pair
and suppress the right ξ term. Then we get, on the model of Eq. (B.72) to
Eq. (B.74):

L0c = �[−i(η†dcσμ∂μηdc + η†ucσ
μ∂μηuc)], (7.127)

L1c = −Bμ

6
(η†dcσ

μηdc + η†ucσ
μηuc), (7.128)

L2c = −�[(W 1
μ + iW 2

μ)η
†
dcσ

μηuc] +
W 3

μ

2
(η†dcσ

μηdc − η†ucσ
μηuc). (7.129)

Since three SU(2) groups are contained in SU(3) the calculation of L3 has
similarities to the calculation of L2 and we get

L3 =−�[(G1
μ + iG2

μ)(η
†
drσ

μηdg + η†urσ
μηug)]

−�[(G4
μ + iG5

μ)(η
†
drσ

μηdb + η†urσ
μηub)]

−�[(G6
μ + iG7

μ)(η
†
dgσ

μηdb + η†ugσ
μηub)]

+
G3

μ

2
(−η†drσμηdr − η†urσ

μηur + η†dgσ
μηdg + η†ugσ

μηug)

+
G8

μ

2
√
3
(−η†drσμηdr − η†urσ

μηur + 2η†dbσ
μηdb

+ 2η†ubσ
μηub − η†dgσ

μηdg − η†ugσ
μηug). (7.130)

Like in the lepton case, the real part of the wave equation is simply the
equality

L = 0. (7.131)

This link between the wave equation and the Lagrangian density is very
strong from the mathematical point of view, since it comes from an algebraic
calculation, similar to taking the real part of a complex number. The
calculation going from the Lagrangian density, by the variational calculus
and an integration by parts, is very dubious from the physical point of
view for propagating waves. This method is nevertheless always available
on the mathematical point of view. It is in this way that we got the wave
equation Eq. (7.111) and the χc. Similarly to Eq. (6.150) only one numeric
equation coming from Eq. (7.117) is simple, the law of conservation of the
total current:

∂μJ
μ
t = 0 (7.132)

Jt = φdrφ
†
dr + φurφ

†
ur + φdgφ

†
dg + φugφ

†
ug + φdbφ

†
db + φubφ

†
ub. (7.133)
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7.6.1 Form invariance of the wave equation

Under the Lorentz dilation R induced by an invertible M satisfying
x′ =MxM † ; det(M) = reiθ ; x = xμσμ ; x′ = x′μσμ, (7.134)

η′uc = M̂ηuc ; η′dc = M̂ηdc ; φ′dc =Mφdc ; φ′uc =Mφuc, (7.135)

Ψ′
c =

(
φ′dc φ

′
uc

φ̂′uc φ̂′dc

)
=

(
M 0

0 M̂

)(
φdc φuc
φ̂uc φ̂dc

)
= NΨc ; c = r, g, b, (7.136)

we then get

N =

(
N 0

0 N

)
; ∂ = Lμ∂μ =

(
0 ∂∂∂

∂∂∂ 0

)
, (7.137)

which implies

Ψ′c = NΨc; Ψ̃′c = Ψ̃cÑ ; Ñ =

(
Ñ 0

0 Ñ

)
; D = Ñ D′N. (7.138)

We then get
Ψ̃c(DΨc)L012 = Ψ̃cÑ D′NΨcL012 = Ψ̃′c(D′Ψ′c)L012. (7.139)

It remains to study the mass term. All sj are determinants of terms similar
to φ, which implies:

s′j = det(φ′) = det(Mφ) = det(M) det(φ) = reiθsj , (7.140)

s′∗j = re−iθs∗j ; ρ
′
2 = rρ2. (7.141)

This gives

χ′c =
(
χ′
b χ

′
g

χ′
r 0

)
; r2ρ22χ

′c = ρ′22χ
′c =

(
re−iθM 0

0 reiθM̂

)
ρ22χ

c, (7.142)

χ′c =

(
r−1e−iθM 0

0 r−1eiθM̂

)
χc = Ñ−1χc, (7.143)

Ψ̃′cχ′c = Ψ̃cÑÑ−1χc = Ψ̃cχc. (7.144)
Therefore the form invariance of the wave equation is equivalent to the
following condition on the mass term:

m′
2ρ

′
2 = m2ρ2 ; m′

2r = m2. (7.145)
And we saw in chapter 3 the link between this relation and the existence
of the Planck constant [18]. A detailed study of the gauge invariance is
in appendix B. Like in the case of the lone electron or with the electron-
neutrino pair, the wave equation Eq. (7.111), that describe all objects of the
first generation, particles and antiparticles, is a wave equation with mass
term, form invariant then relativistic invariant, and gauge invariant under
the U(1)× SU(2)× SU(3) group.
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7.7 Charge of quarks

We saw how the fractional charge of quarks is determined by the only
change of the P0 operator in Eq. (6.13) into the similar P ′

0 operator in
Eq. (7.13). Since the right part of the quark wave is canceled this operator
is reduced to

P ′
0(Ψc) = kΨcγ21, c = r, g, b; k = −1

3
. (7.146)

It is easy to establish that the k factor must be the same for all quarks,
because if it was not the same we should not be able to get the gauge
invariance under the U(1) × SU(2) × SU(3) group. But where does the
k = − 1

3 value come from? To see this, we separate in the complete wave
its left part L and its right part:

L =
1

2
(Ψ + iΨL21) =

(
ΨlL Ψr

Ψb Ψc

)
. (7.147)

We use S such as

S = L012345; P
+ =

1

2
(1 + S); P− =

1

2
(1− S). (7.148)

We then get

P 0(L) =

(
ΨlL kΨr

kΨb kΨc

)
L21

= (P+LP+ + kP+LP− + kP−LP+ + kP−LP−)L21 (7.149)

= [
1 + 3k

4
L+

1− k

4
(SL+ LS + SLS)]L21. (7.150)

The choice k = − 1
3 that we made in Sec. 6.3 and that gives the value of

each charge of quark, value coming from the model of quarks, is then the
choice allowing to simplify the calculations: the P 0 operator has only one
term, and this term is symmetric on S:

P 0(L) =
1

3
(SL+ LS + SLS)L21. (7.151)

The study of the boson part of the standard model will allow us to see what
is interesting in this simplification. The fractional charge of quarks is then
not at all arbitrary; the choice k = − 1

3 is necessary to get the simplified
form of the P 0 operator.
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Chapter 8

Magnetic monopoles

We present here the recent experimental works on magnetic

monopoles. Next we apply to the magnetic monopole our study of

electro-weak interactions.

8.1 Russian experimental works

Recent experimental work on magnetic monopoles began with V.F.
Mikhailov [60]. He was continuing work made fifty years ago by F. Ehren-
haft. An electric arc produces ferromagnetic dusts that are conducted by
Ar gas into a chamber where a laser lights them up. Into the chamber
the ferromagnetic particles are moved by a magnetic field and an electric
field orthogonal to the magnetic field. The direction of the fields may be
reversed. Movements are observed, under the light of the laser, with an
optical microscope.

The measurement of the magnetic charge of these particles took advan-
tage of the fact that some of them have also an electric charge and the
movement of an electric charge in an electric field is well known. Mikhailov
observed an elementary magnetic charge g = nα

e

6
. The fine structure

constant α is small (α ≈ 1
137 ).

But the expected value is completely different [38]. A calculation made
by Dirac, obtained again in a very smart way by G. Lochak from his theory
of the monopole [48] gives for the elementary magnetic charge

eg

�c
=
n

2
, (8.1)

where n is an integer. The elementary magnetic charge observed by
Mikhailov is much smaller than the theoretical charge. We may ask if
there is a reason to refute the theoretical calculation, or if there exists an

111
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experimental reason for this divergence. Both things are possible: each
derivation of Eq. (8.1) includes a calculation of the potentials created by
charges, and we can doubt its validity. The magnetic charges observed
by Mikhailov were visible only during the illumination by the strong laser
light, and there may be second order effects coming from this illumination.
Mikhailov realized also an experiment where the ferromagnetic particles
were included into water droplets, with spherical symmetry. Then he mea-
sured magnetic charges compatible with the elementary magnetic charge
calculated by Dirac. The value of such a charge is then a question that
must be solved experimentally.

The experimental work of L. Urutskoev has in common with Mikhailov’s
work only the use of an electric arc. To shatter concrete, little holes are
made and filled with water, an electric wire is put into each hole and an
electric condenser is discharged into the wires. The discharge produces an
explosion and this explosion shatters the concrete. The first astonishing
fact was the great speed of the pieces of concrete smashed by the explosion,
this induced a need to better study what was going there.

The continuation of experiments was to shoot into pure water, without
concrete. An intense glow was found to appear above the device. The
duration of this phenomenon, about 5ms, was much greater than the du-
ration of the discharge, 0.15ms. A spectral analysis of the emitted light
was performed. Spectral lines of nitrogen or oxygen were very weak, while
the glow was emitted into the air. The strongest spectral lines showed the
presence of Ti, Fe, Cu, Zn, Cr, Ni, Ca and Na. The presence of Cu and
Zn could come from the electric wires, the presence of Ti signified that the
Ti foils used in discharges spread above the device, in spite of the cover.
The presence of the other elements was enigmatic. This induced Urutskoev
to analyze more finely the metal powder resulting from the explosion of
the Ti foil in water. Observations made were still stranger. While the
foil was made of 99.7% Ti the ratio of Ti in the powder may go down to
92%. The amount of titanium disappearing corresponded to the amount
of new elements appearing, Fe, Si, Al, Ca, Na, Cu and Zn, principally. In
addition, an isotopic analysis shows that the isotopic composition of Ti had
changed, with a significant decline in the ratio of 48Ti. The experiments
were repeated many times, with all necessary precautions. Other metals
were used, in particular zirconium. The ratios of different outside elements
change depending on the composition of the exploded foil. For instance
there is much more Cr with zirconium than with titanium, and much less
Si and Al.
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Since the transformation from an element to another is usually asso-
ciated with radioactivity, an intensive search of radioactive emission was
made. There were no X or γ rays detected, in spite of 1019–1020 trans-
formed atoms each experiment. Detection of neutrons was also performed.
Scintillator detectors indicated a pulse that allowed to estimate the speed of
the radiation as 20−40 m/s. Such a low speed cannot match a neutron flux,
because neutrons should be ultra cold. An attempt to detect the radiation
with photo emulsions was made, for lack of better means. We will come
back later on what was seen with these films. Urutskoev saw next that the
presence of a strong magnetic field changed aspects of these traces, and he
deduced that the radiation coming out of his shots had magnetic properties.
He then led experiments to trap the radiation with strong magnets and he
used the Moessbauer effect to prove the reality of these captures.

Urutskoev noted also that the transformations come principally from
even-even kernels, that is to say from kernels with an even number of pro-
tons and an even number of neutrons. He noticed that the mean binding
energy of produced kernels is very few different from the mean binding en-
ergy of initial kernels: there is no nuclear energy emitted or absorbed in
significant amounts. And all the produced kernels are in the ground state;
there is no radioactivity.

Experiments by N. G. Ivoilov [43] indicate that it is possible to get
similar traces on photographic films with much less energy: he discharged
an electric arc into water, with a current not exceeding 40 A with an 80 V
tension. He got traces that agreed with properties of magnetic monopoles
predicted by the G. Lochak’s theory.

8.2 Works at E.C.N.

Research performed at the Ecole Centrale de Nantes, in the laboratory
of Guillaume Racineux by Didier Priem and Claude Daviau [54] with the
help of Henri Lehn † and the Fondation Louis de Broglie, aimed to satisfy
and to continue Urutskoev’s work. This seemed necessary in view of the
extraordinary nature of obtained results. The experimental device is de-
pendent on the available equipment at the E.C.N. and is different, even if it
is as few ways as possible, from that used by Urutskoev. The generator is
an American one, Maxwell type, maximum power 12 kJ at 8.4 kV, capacity
360 μF and a vessel (Figure 1). The first containment vessel was made of
aluminum. It was replaced by a second vessel to allow the gas produced
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during an experiment to be collected. Experiments by Urutskoev allow him
to conclude that the gas is almost totally hydrogen. This second vessel was
made of stainless steel and it contained a tank with an internal diameter of
20 mm covered by polyurethane. The internal diameter was then reduced
to 16 mm which improved the yield. A third vessel was made when the
second was worn out. The current coming from the generator is distributed
into two electrodes, one up and one down. They are linked by a fuse made
of Ti40 titanium.

Figure 1: Vessel

After an experiment, the gas is collected and its volume is measured.
Powders are collected with the liquid which contains them, and are placed
for 24 hours under a photographic plate exposed to the radiation coming
out of powders. This photographic film is then developed and examined
with the optical microscope. Powders are then dessicated and examined
with the electronic microscope of the E.C.N. This allows us to get three
kinds of results, about powders, gas and traces on the photographic films.

8.2.1 Results about powder and gas

Our observations confirm the results obtained by L. Urutskoev, even if
our ratios of production are lower than those he got. The energy of the dis-
charge being lower than that of Urutskoev, and the discharge being shorter,
this is not astonishing. But aside from this, the strange elements which we
got spectrograms using the electronic microscope have a composition very
near that obtained by Urutskoev. At the same time our observations make
the things still stranger: if we noticed the presence of one per cent of iron in
our powders, this iron is not dispersed a little everywhere. On the contrary
what we notice is: one per cent of the particles are made of so much iron
than titanium is quasi-missing. It is often iron which is dominating but
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there are experiments where we find more copper than iron. The particles
made of copper have different scales, some are numerous and have length
of about one micrometer, others (much rarer) are bigger and even visible to
the naked eye. Those particles contain very little titanium. The composi-
tion of the exotic particles may be more complicated: we observe particles
of iron-chromium, and of copper-zinc. Iron is rarely alone, it is most of time
with chromium, a little nickel, sometimes 1% manganese, and with carbon
and oxygen. The composition of particles is often not homogeneous, a par-
ticle may have not transformed titanium at places while at another place
nearly all the titanium may have been replaced.

Figure 2 shows a particle with an evident continuity, which has dark
places and one light place, in addition to many holes. On the left and above,
titanium remains intact. At the center, the spectral analysis indicates the
following mass composition: Fe 69.8%, Ti 10.81%, Ni 7.28%, Cr 4.33%,
O 3.98%, C 3.8%. Holes are also significant, because they indicate gas
production just before the solidification caused by the intense cooling in
water.

Figure 2: Particle with an iron place

The fact that iron is rarely alone, and that it appears with chromium
and nickel has much complicated our work, because the stainless steel of our
tank is made of those three metals, and it was possible that the stainless
steel of our tank contaminated the powders. Stainless steel was therefore
removed from the inside of the tank, which now contained only titanium
and polyurethane. The suppression of the stainless steel changed nothing
actually, there was still iron in the powders when the only metal inside the
tank was titanium. This was predictable since the composition indicated
above is not that of the stainless steel of our vessel. We can also easily
verify that the titanium used to make our fuse does not contain the ratio
of iron, copper and other materials found in the powders.
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Extraordinary results obtained by Urutskoev are therefore real. The
one who thinks they are impossible only has to reproduce the experiment.
If he is honest, he will be obliged to see that something really happens.

But nothing should happen: the conditions of the experiment generate
an energy measured in kJ, this provides only a hundred of eV at most to
each concerned atom of titanium. This is ridiculously small in comparison
with nuclear binding energies. In addition the interactions known then
work in a completely different way. For instance weak interactions allow
one proton of a kernel to transform into a neutron, or vice versa, and that
is subject to the general laws of quantum mechanics, where randomness
plays an obligatory and permanent role. If the kernel of a titanium atom
was transformed by weak interaction, it could give a kernel of scandium or
vanadium. Neither of those metals was seen. We saw vanadium rays not
once, and vanadium is obligatory if you want to go, with weak interactions,
from titanium to iron or copper. And if weak interactions were happening,
transformed kernels should arrive at random, in time and in space, not in
macroscopic bundles.

We must not forget that our experiment is an explosion and an explosion
is not exactly the best way to assemble some dispersed atoms into a packet.
It is on the other hand a very good way to disperse concentrated matter.
Since we see particles made of iron, or of copper, or of nickel, or of iron-
chromium, with very little titanium, these elements were produced together.
We do not understand how it is possible, but that changes nothing about
the reality of the phenomenon.

In addition there are energy constraints. The mass of the elements
found in our powders that should not be there is 1010 times greater than
the mass of the energy brought by the electric discharge. To excellent
precision we can then say that the total energy of the produced atoms
is equal to the total energy of the destroyed atoms. This conservation
of the total energy restricts considerably the possibilities of reaction. We
cannot get for instance vanadium. The isotopes of vanadium are heavier
than those of titanium, which allows to 48V to be β+ radioactive and to
disintegrate into 48Ti. And as we have detected no radioactivity linked to
these transformations, it is necessary that the total number of electrons,
protons and neutrons are also conserved. So strange as it may be, all these
conditions of conservation do not forbid the observed transformations. As
Urutskoev said, it is as if for instance 100 kernels of 48Ti go together for
some reason to form a big "kernel", then reallocate their nucleons to form
at the same time lighter and heavier kernels. Doing so they also respect
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the conservation laws of energy, electric charge, baryonic charge, leptonic
charge... And in addition this magical transformation is accompanied by
no significant radioactivity!

Some gas was always produced during the metallurgical works made at
the Ecole Centrale. The presence of this gas was considered as a nuisance,
limiting the repetitiveness of the experiments. The device that we use
allows us to easily measure the quantity of produced gas. This gas is quasi
totally made of hydrogen. As titanium heated to a very high temperature
is a reducing agent, this is not surprising. It is also difficult to estimate the
quantity of oxygen going into the powders as oxide or dioxide of titanium,
or dissolving into water. We have estimates indicating that a part of the
hydrogen does not come from the dissociation of water. To prove this an
experiment in heavy water has been done with success by L. Urutskoev.
He got not only D2, but also HD and H2. And this hydrogen cannot come
from the water. Transformations of titanium can leave isolated protons and
electrons which form hydrogen atoms. This hydrogen, either of chemical
origin or not, is formed inside particles, which are often so spongy that they
float on the water in which we collect the powders.

8.2.2 Stains

After each trial, the titanium powders from the fusible were collected
along with the water contained in the trial chamber and are placed under
a photographic plate. The traces are produced, not immediately in the
electric arc, but by what is in the water and powders, and only several hours
after the electric arc. Sometimes, some things emerge from the water, it is
not only the things that make the traces, but also a part of the powders on
the surface of the water. They emerge from the water, despite the gravity
and the surface tension of water, and are glued on the wrapping paper of
the photographic plate (experiments 103, 62, 79)

Figure 3: Stained paper.
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8.2.3 Traces

Powders collected after an experiment and the photographic plate, fol-
lowing both indications of Urutskoev and Lochak, are placed between two
metallic plates forming a plane condenser, under a low 10V tension. The
movement of a magnetic monopole in a fixed uniform electric field is anal-
ogous to the movement of an electric charge in a fixed uniform magnetic
field. The Laplace force is

�F = g( �H − �v

c
× �E), (8.2)

where g is the charge of the magnetic monopole. In a constant electric
field orthogonal to the plane of the plate, a monopole must have a circular
trajectory. We expect rotations into the plane of the photographic plate,
and it is what happens rather often, as figures 4 to 8 show.

Figure 4: Circle. Diameter: 0.2 mm

Figure 5: Circle. Length of the picture: 2.6 mm

Figure 6: Circle. Length of the picture: 2.47 mm

Figure 7: Circle. Length of the picture: 0.95 mm

Figure 8: Circle. Length of the picture: 1.45 mm
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We must not expect all traces to be circular, because the presence of glass
dishes between plates induces a non-uniform electric field. We must also
notice we do not know a priori what we seek, we see probably only a
little part of traces, in the absence of knowing completely the dynamics of
magnetic monopoles. We also do not know how monopoles interact with
the photographic plate. It is easier to see the very long and stark traces,
more difficult to see the short and weak traces. Circles are not the only
curved traces, we obtain also horseshoes:

Figure 9: Horseshoe. Length of the picture: 0.19 mm

We must expect imperfect circles, notably because the loss of energy
gives a smaller radius. This is visible in the following pictures

Figure 10: Braking. Length of the picture: 1.78 mm

Figure 11: Braking. Length of the picture: 1.9 mm

Figure 12: Braking. Length of the picture: 0.57 mm
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Figure 13: Braking. Length of the picture: 0.2 mm

Large traces, as in figures 9 or 13, are actually double traces. This
doubling of traces is more visible when the two traces are well separated:

Figure 14: Double trace. Length of the picture: 2.67 mm

Figure 15: Double trace. Length of the picture: 0.58 mm

The magnetic monopole of G. Lochak is a chiral object, built from an
angle which is pseudo-scalar. The simplest object of our everyday world
explaining what is chirality is a screw. There are left screws and right
screws. This property is satisfied for several observed 1 traces. We can see
spirals, often with difficulty. Sometimes the spiral is very visible, as on this
trace:

1. This is at the moment the best proof of the predictive power of Lochak’s idea of a
Dirac wave for the magnetic monopole.
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Figure 16: Spiral trace. Length 2mm

and its magnifications:

Figures 17 and 18: Magnifications of figure 15

Undulations are often seen on magnifications of our pictures:

Figure 19: Wave. Length of the picture: 2.67 mm

A wavelength is directly measurable in this picture, where we count 30
wavelengths. This gives a 89μm wavelength. A wavelength is also directly
measurable in the following picture:

Figure 20: Wave. Length of the picture: 1.54 mm

Considering the four undulations in the middle we can estimate the
wavelength: 130μm. Moreover a second thing is visible on this picture, a
double pattern with alternately rising and descending traces.

The Lochak’s theory of the magnetic monopole can account for this
double pattern: the wave is a Dirac spinor made of two Weyl spinors, a
right one and a left one. If the proper mass of the monopole is null these
two Weyl spinors are independent and may move one without the other. If
the proper mass is not null the two Weyl spinors are coupled by the mass
term. Perhaps what we see in figure 20 is exactly that, a left wave and a
right wave, of which we see only pieces. They are superposed at the ends
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and successively seen in the middle. A double pattern is rather common,
as we can see in the following figures:

Figure 21: Double pattern. Length of the picture: 2 mm

The wavelength is estimated 143μm.

Figure 22: Double pattern. Length of the picture: 1.64 mm

Here the wavelength is estimated 65μm.

Figure 23: Double pattern. Length of the picture: 2.65 mm

The wavelength is estimated 177μm. If the wavelength is the de Broglie’s
wavelength, not 2 an artifact, it is possible to calculate the impulse:

p = mv =
h

λ
(8.3)

For the wave of figure 22 where the wavelength is the shortest the impulse
is about 10−29 kgm/s. The big question is then the velocity of the magnetic
monopole. If it is the speed of light the energy is very small. Can a wave
with only 0.02 eVc−2 make the visible effects in figure 22? This is dubious.
The only experimental velocity was given by Urutskoev and it is very low:
20–40 m/s. A velocity of 20 m/s gives then a mass: 5 · 10−31 kg, similar
to the proper mass of the electron. A velocity still lower is possible since
it is perhaps at the end of the braking that we saw this trace. Another
theoretical possibility is given by Eq. (5.23) where the limit speed has a
null limit when ε is near 1.

2. G. Lochak thinks that what we see is not the de Broglie’s wavelength, but only a
scale corresponding to the response of the plate to the movement of the wave. But then
why two patterns?
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Figure 24: Continuous-broken trace. Length of the picture: 1.47 mm.

Continuity of many traces is only an artifact arising from a blurred picture.
We can see this on the next picture, where a numeric enlargement allows
us to count grains and to estimate the distance between two grains: 8μm.

Figure 25: Enlarged trace. Length of the picture: 0.38 mm.

Another frequent aspect of our traces is the quasi-parallelism of very long
traces, as in the following figure:

Figure 26: Multiple traces. Length of the picture: 1.97 mm.

Figure 26 shows only a part of each trace which extends on the two sides
of the picture. We see five traces nearly parallel and we guess two other
ones. We can suppose the double character of these traces is linked to the
double character of the wave, with a left and a right part. Following this
hypothesis we can conclude that single traces are due to superimposed left
and right parts. The parallelism of some traces can come from a weak
separation of divergent traces, as in the following figure:
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Figure 27: Divergent traces. Length of the picture: 2.67 mm.

These traces present obviously a granular structure, with very similar dis-
tances between grains: this argues strongly for the hypothesis of a unique
wave, left and right. The wavelength is estimated as 19.6μm. A few branch-
ings between traces may be seen:

Figure 28: Branching. Length of the picture: 1.87 mm.

Figure 29: Branching. Length of the picture: 0.77 mm.

One trace favoring best the hypothesis of the left and right spinors is the
following, with a magnification of the upper trace and another of the down
trace:

Figure 30: Double spiral. Length of the picture: 1.94 mm.

The two magnifications are similar to two screws turning in the opposite
direction.

All these traces show stark differences from the physics of particles with
an electric charge. To see the left or right nature of a trace will necessitate
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a three-dimensional observation of these traces. Such observations show
that monopoles make depressions on the surface of the plate [26].

8.3 Electrons and monopoles

The invariant wave equation Eq. (3.1) of the electron was obtained from
the wave equation of Lochak’s magnetic monopole Eq. (3.3) in the particular
case Eq. (3.4) where the wave equation is homogeneous. To do this we
replaced the local chiral gauge by the local electric gauge. We shall then
get the invariant wave equation of the magnetic monopole by using the
inverse transformation, replacing the electric gauge by the chiral gauge.
We read this gauge in space algebra as:

φ′ = eiaφ ; QB′ = QB −∇a ; Q =
g

�c
, (8.4)

where a is a real number and where g is the charge of the magnetic
monopole. iB is the pseudo-vector of space-time magnetic potential, which
is also the Cabibbo–Ferrari’s potential of the theory of the monopole as well
as the potential term that is multiplied by the projector P0 in Eq. (6.22).
The invariant wave equation of the magnetic monopole reads then :

φ(∇φ̂)σ21 + φQiBφ̂σ21 +mρ = 0. (8.5)

First difference with the case of the electron: this wave equation has no
linear approximation. It is not allowed to add an e−iβ term into the mass
term because β is not chiral gauge invariant.

To get the 8 numeric equations of this invariant wave equation we use
a space-time vector U satisfying

φQBφ̂ = Uμσμ, (8.6)

and we get in the place of Eq. (3.10) to Eq. (3.17) the system

0 = w3 − U3 +mρ, (8.7)

0 = v2, (8.8)

0 = −v1, (8.9)

0 = w0 − U0, (8.10)

0 = −v3, (8.11)

0 = w2 + U1, (8.12)

0 = −w1 − U2, (8.13)

0 = −v0. (8.14)
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As with the electron the scalar part of the invariant wave Eq. (8.7) is the
Lagrangian density. Lochak immediately remarked that in this Lagrangian
density the current J = D0 is replaced by K = D3. From there comes in
Eq. (8.7) the 3 index instead of a 0 index. We can say that the invariant
wave equation is somewhere simpler than the invariant wave of the elec-
tron: all four vμ terms are zero. This means that the four Dμ vectors are
conservative. We recall that the density D0

0 gives in the case of the electron
what quantum theory sees, from the Schrödinger equation, as a probability
density. Lochak has proved that K = D3 is the conservative current linked
to the invariance of the Lagrangian density Eq. (8.7) under the chiral gauge
Eq. (8.4). Vectors D1 and D2, equally conservative, are unknown in the
formalism of Dirac matrices. We have seen in Eq. (2.86) and Eq. (2.87) that
the electric gauge gives a rotation in the (D1, D2) plane. With the chiral
gauge all four Dμ are invariant. They are with Eq. (2.39) the elements of
an orthogonal basis, and their components are the elements of the matrix
of the dilatation D in Eq. (3.44).

8.3.1 Charge conjugation

We use again the link between the wave of the particle and the wave of
the antiparticle. We note the wave of the antimonopole φa:

φ̂ = φ̂aσ1 ; φa = −φσ1 ; φ = σ1φa. (8.15)

The invariant wave equation is then read as

σ1φa(∇φ̂a)σ1σ21 + σ1φQiBφ̂aσ1σ21 +mρ = 0. (8.16)

Multiplying on the right and on the left by σ1 we get

−φa(∇φ̂a)σ21 − φaQiBφ̂aσ21 +mρ = 0. (8.17)

This is usually simplified into

φa(∇φ̂a)σ21 + φaQiBφ̂aσ21 −mρ = 0. (8.18)

Therefore Lochak remarked immediately that the charge conjugation does
not change the sign of the magnetic charge, contrary to the case of the
electric charge. Then there is no polarization of the vacuum from magnetic
charges [46] [47] [48]. But the form invariance of the wave equation indicates
that the true wave equation is Eq. (8.17), not Eq. (8.18). It should then be
more correct to say that, contrary to the case of the electron, the charge
conjugation changes here not only the differential term, but also the charge,
therefore it does not change the gauge nor the sign of the mass–energy.
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8.3.2 The interaction electron-monopole

The space-time vector B is, like the vector electromagnetic potential
A, a contravariant vector. This is correct because O. Costa de Beauregard
explained [28] why potential terms are moving with sources that are elec-
tric and magnetic charges. The QB vector, similar to the qA vector, is
a covariant vector (see chapter 4). This allows the interaction by gauge
invariance. We have seen in chapter 6 that the Weinberg–Salam θW an-
gle is invariant under the group of dilations. An electric charge creating a
potential A creates then also, with Eq. (6.85), a potential :

B = cos(θW )A. (8.19)

Since this B potential is present in the wave equation of the magnetic
monopole, it is able to interact with the electric charge. This interaction
was detailed by Lochak. The basis of his calculation is the continuity of
the wave function under the group of rotations. The continuity of the wave
being comforted by the continuity of the potential, it is not necessary to
review the calculation and we can use [46] [48]. The B potential used there
was questionable because it is not continuous in each point of the z axis. It
is why the result, even if the physical reasoning was perfect, is a little too
short. In the case of a potential created by an electric charge we have

A0 = −e
r
; B0 = cos(θW )A0 = cos(θW )(−e

r
) = −e cos(θW )

r
= −e

′

r
,

(8.20)
where e′ = e cos(θW ). The calculation of the solutions of the wave equation
for electron+neutrino in the hydrogen case implies [25] simply

B = B0 = −e
r
. (8.21)

The Dirac formula giving the magnetic charge that Lochak obtained from
only the condition of continuity of the wave under the group of rotations
becomes then

eg

�c
=
n

2
(8.22)

where n is an integer. This gives a magnetic charge which is a multiple of:

g =
�c

2e
. (8.23)

We get then the charge calculated by the Dirac formula. This charge has
been gotten by numerous ways, for instance from the angular momentum
of the electromagnetic field. Poincaré’s equation giving the trajectory of an
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electron under the influence of a magnetic monopole [42] is unchanged, as
is the cone that he introduced. Lochak proved that this cone is the Poinsot
cone of a quantum top [49].

The presence of a σ21 term in the invariant wave equation implies, simi-
larly to the electron case, the existence of two other wave equations obtained
by a circular permutation of indices 1, 2, 3 in Pauli matrices (see chapter
5). A fourth kind of magnetic monopole comes from the wave equation of a
fourth neutrino Eq. (7.61) by adding a gauge term. We can then think that
four kinds of magnetic monopoles may exist, three of them similarly to the
fact that there are electrons, muons and tauons. These three generations
must be treated separately in the electro-weak interactions that we look at
now.

8.3.3 Electro-weak interactions with monopoles

We want to get an identity similar to Eq. (6.144) allowing to Ψ−1 to exist
everywhere, we suppose then that the wave of the monopole interacting is

Ψ =

(
φL φn
φ̂n φ̂L

)
; φn = φnL + φnR (8.24)

where φn is the wave of the magnetic monopole. We use here Lochak’s idea
of the monopole as an excited state of the neutrino, and we place the wave
of the monopole where the place of the neutrino was. The supplementary
left spinor φL may be seen as a part of an electric wave. We conserve the
form Eq. (6.22) of the covariant derivative. Since only P0 was changed
when we went from the lepton case to the quark case, we shall use the same
projectors P± of Eq. (6.12) and we use again projectors Pj in Eq. (6.14) to
Eq. (6.16). In place of Eq. (6.13) we let

P0(Ψ) = aΨγ21 + bP−(Ψ)i, (8.25)

where a and b are real numbers. We get the same commutation relations
as in Eq. (6.17), except the last equality which must be replaced by:

P0Pj = PjP0 = −aiPj. (8.26)

Therefore the gauge group has the same structure U(1) × SU(2). We get
with Eq. (8.24)

P+(Ψ) =

(
φL φnL
φ̂nL φ̂L

)
; P−(Ψ) =

(
0 φnR
φ̂nR 0

)
. (8.27)
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We recall that

γ21 =

(
iσ3 0

0 iσ3

)
; φRσ3 = φR ; φLσ3 = −φL. (8.28)

We then have

Ψγ21 = i

(
−φL φnR − φnL

−φ̂nR + φ̂nL φ̂L

)
; P−(Ψ) = i

(
0 −φnR
φ̂nR 0

)
,

P0(Ψ) = i

(
−aφL (a− b)φnR − aφnL

(−a+ b)φ̂nR + aφ̂nL aφ̂L

)
, (8.29)

BP0(Ψ) = i

(
(−a+ b)Bφ̂nR + aBφ̂nL aBφ̂L

−aB̂φL (a− b)B̂φnR − aB̂φnL

)
. (8.30)

We use Eq. (8.28) and Eq. (6.15), then we get

P2(Ψ) =

(
φnL −φL
−φ̂L φ̂nL

)
, (8.31)

P1(Ψ) = P2(Ψ)i = i

(
φnL φL
−φ̂L −φ̂nL

)
, (8.32)

(W1P1 +W2P2)(Ψ) = i

(
(−W 1 + iW 2)φ̂L (−W 1 − iW 2)φ̂nL
(Ŵ 1 − iŴ 2)φnL (Ŵ 1 + iŴ 2)φL

)
. (8.33)

Using W+ and W− defined in Eq. (6.74) we get

(W1P1 +W2P2)(Ψ) = i

(
W−φ̂L −W+φ̂nL
Ŵ+φnL −Ŵ−φL

)
. (8.34)

We have also :

P3(Ψ) = P+(Ψ)(−i) = i

(
−φL φnL
−φ̂nL φ̂L

)
, (8.35)

W3P3(Ψ) = i

(
−W 3φ̂nL W 3φ̂L
−Ŵ 3φL Ŵ 3φnL

)
. (8.36)

The gauge derivative Eq. (6.22) is then equivalent to the system

Dφ̂n = ∇φ̂n + i
g1
2
[aBφ̂nL + (−a+ b)Bφ̂nR] + i

g2
2
(W−φ̂L −W 3φ̂nL),

Dφ̂L = ∇φ̂L + i
g1
2
aBφ̂L + i

g2
2
(−W+φ̂nL +W 3φ̂L). (8.37)

With Eq. (6.83) we get

g2W
3 =
√
g21 + g22Z

0 + g1B. (8.38)
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Then we get
Dφ̂n = ∇φ̂n + i

g1
2
[(a− 1)Bφ̂nL + (−a+ b)Bφ̂nR]

+ i
g2
2
W−φ̂L − i

2

√
g21 + g22Z

0φ̂nL. (8.39)

We want to get ∇φ̂n + iQBφ̂n so we must have
g1(a− 1) = g1(b− a) = 2Q. (8.40)

The first equality gives b = 2a− 1 and if this condition is satisfied we get
g1 =

e

�c
,

e(a− 1)

�c
= 2Q =

2g

�c
,

e(a− 1) = 2g =
�c

e
,

a− 1 =
�c

e2
=

1

α
, (8.41)

where α is the fine structure constant, and we must take

a = 1 +
1

α
; b = 1 +

2

α
. (8.42)

This gives in Eq. (8.37)

Dφ̂L = ∇φ̂L + i
g1
2
(1 +

1

α
)Bφ̂L + i

g2
2
(−W+φ̂nL +W 3φ̂L), (8.43)

which is not the derivative term of an electron and remains to be inter-
preted. Since terms containing a are much bigger than other terms the
magnetic charge term seems dominant in Eq. (8.39) and Eq. (8.43).

8.3.4 Gauge invariant wave equation

Since the pair: (wave of the monopole-φL wave) is the analog of the
electron-neutrino pair, the wave equation for the Ψ in Eq. (8.24) is identical
to Eq. (6.147):

Ψ̃(DΨ)γ012 +mρρρmΨ̃χm = 0 ; χm = χlγ0. (8.44)
The ρρρ term and χl are obtained by replacing Ψl by Ψm in the formulas of
Appendix B. This wave equation is form invariant under the transformation
R in Eq. (1.42) induced by M because we have Eq. (6.105) and:

Ψ′ = NΨ ; N =

(
M 0

0 M̂

)
, (8.45)

Ψ̃′ = Ψ̃Ñ, (8.46)

ρρρ′ = rρρρ, (8.47)

m′ρρρ′ = m′rρρρ = mρρρ. (8.48)
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The existence of only one mass term, and hence the existence of only one
impulse-energy, implies the existence of a single wavelength for all three
spinors. This is visible in figure 30. The wave equation Eq. (8.44) is also
gauge invariant under the gauge transformation defined by Eq. (6.119) to
Eq. (6.122), because P0 has the general form studied in Appendix B and
we get

Ψ̃′(D′Ψ′)γ012 +mρρρΨ̃′χ′
m = 0. (8.49)

The mechanism of the spontaneously broken gauge symmetry is then
not necessary, neither for the electron nor for the magnetic monopole since
the wave equations are simply gauge invariant.
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Chapter 9

Inertia and gravitation

Using the preceding wave equations with mass terms, we introduce

the inertial terms corresponding to the use of variable M matrices. The

equality between gravitational and inertial mass is the cause of the exis-

tence of the density of probability. The physical necessity of normaliza-

tion of the wave implies that the momentum–energy tensor of particle

physics becomes symmetric, allowing the Einstein–Ricci gravitational

tensor to rule our space-time.

9.1 Differential geometry

All differential operators in the preceding chapters are built on the ∇ =

σμ∂μ operator. It is then this operator that we shall consider now. The
invariance group uses M matrices which are independent on x = xμσμ.
Moreover the σμ in the R transformation Eq. (1.42) are the same in x or in
x′: they are invariant. Then the γμ of the relativistic quantum theory are
also invariant under the Lorentz group. We shall then consider these σμ,
γμ and Lμ as invariant when we allow M to vary. We have three kinds of
“variance”: the wave φ, the contravariant x and the covariant ∇:

φ′ = φ′(x′) =Mφ(x) =Mφ ; x′ =MxM † ; ∇ =M∇′M̂. (9.1)

Since the Cl∗3 invariance group is the set of the M we must start from
these terms. We suppose now that M =M(x) is an analytic function with
M(0) = 1 satisfying

M =

⎛⎜⎝1 +
dxμ

2
(aμ + ibμ + pμ + iqμ)

dxμ

2
(fμ + gμ + ihμ − ilμ)

dxμ

2
(fμ − gμ + ihμ + ilμ) 1 +

dxμ

2
(−aμ − ibμ + pμ + iqμ)

⎞⎟⎠ ,
(9.2)

133
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where aμ, bμ,... qμ, are 32 numeric functions of x and dxμ are the infinites-
imal increments of xμ coordinates. This gives

M = 1 +
dxμ

2
(pμ + fμσ1 + lμσ2 + aμσ3 + hμiσ1 + gμiσ2 + bμiσ3 + iqμ),

(9.3)

M † = 1 +
dxμ

2
(pμ + fμσ1 + lμσ2 + aμσ3 − hμiσ1 − gμiσ2 − bμiσ3 − iqμ),

(9.4)

M̂ = 1 +
dxμ

2
(pμ − fμσ1 − lμσ2 − aμσ3 + hμiσ1 + gμiσ2 + bμiσ3 − iqμ),

(9.5)

M = 1 +
dxμ

2
(pμ − fμσ1 − lμσ2 − aμσ3 − hμiσ1 − gμiσ2 − bμiσ3 + viqμ).

(9.6)

We get

MM = det(M) = 1 + dxμ(pμ + iqμ), (9.7)

det(M−1) = 1− dxμ(pμ + iqμ), (9.8)

M
−1

=M det(M−1),

= 1 +
dxμ

2
(−pμ + fμσ1 + lμσ2 + aμσ3 + hμiσ1 + gμiσ2 + bμiσ3 − iqμ),

(9.9)

M̂−1 = (M
−1

)†

= 1 +
dxμ

2
(−pμ + fμσ1 + lμσ2 + aμσ3 − hμiσ1 − gμiσ2 − bμiσ3 + iqμ).

(9.10)

The dilation R defined from M satisfies

x′ = R(x) =MxM †. (9.11)

We get

x′0 = x0 + (pμx
0 + fμx

1 + lμx
2 + aμx

3)dxμ, (9.12)

x′1 = x1 + (fμx
0 + pμx

1 + bμx
2 − gμx

3)dxμ, (9.13)

x′2 = x2 + (lμx
0 − bμx

1 + pμx
2 + hμx

3)dxμ, (9.14)

x′3 = x3 + (aμx
0 + gμx

1 − hμx
2 + pμx

3)dxμ. (9.15)

Christoffel’s symbols Γα
βγ being defined as

x′α = xα + Γα
βγx

βdxγ , (9.16)



August 28, 2015 13:33 Limit Theorem for Nonlinear-9586 livre_CD_JB page 135

Inertia and gravitation 135

we then get

Γ0
0μ = Γ1

1μ = Γ2
2μ = Γ3

3μ = pμ, (9.17)

Γ1
0μ = Γ0

1μ = fμ ; Γ2
0μ = Γ0

2μ = lμ ; Γ3
0μ = Γ0

3μ = aμ, (9.18)

Γ2
3μ = −Γ3

2μ = hμ ; Γ3
1μ = −Γ1

3μ = gμ ; Γ1
2μ = −Γ2

1μ = bμ. (9.19)

Since R is a dilation, product in any order of a Lorentz transformation and
a homothety, the Christoffel’s symbols have this particular form and we
get not 64 but only 28 = 4 × 7 functions: the four qμ present in Eq. (9.2)
are not in the geometry, because the kernel of the group homomorphism
M �→ R (that is at the origin of the spin 1/2) is the U(1) group generated
by i [13] [17]. Since the Christoffel’s symbols are not symmetric, a torsion
exists. Vectors transforming as Eq. (9.16) are the contravariant ones. Now
for covariant vectors we have

∇ = σμ∂μ =MσμM̂∂′μ, (9.20)

with the same σμ. This gives

∇′ = σν∂′ν =M
−1
σνM̂−1∂ν = σν(∂ν − dxμΓρ

νμ∂ρ). (9.21)

Therefore we get for covariant vectors the usual

∂′ν = ∂ν − dxμΓρ
νμ∂ρ. (9.22)

This relation allows the covariant derivative to be commutative with con-
tractions. It leads the covariant derivative back to partial derivative for
scalars. The connection Eq. (9.17) to Eq. (9.19) is new, because all preced-
ing attempts have used variable γμ, which is incompatible with the relativis-
tic invariance of the quantum wave. A nonvanishing torsion has been used
previously by A. Einstein [37] to unify gravitation and electromagnetism.
Since his attempt was made very early in the history of quantum mechanics
he evidently did not start from the Dirac wave, which was invented 3 years
after. We next get

φ
′∇′φ̂′ = (Mφ) M

−1
σμM̂−1∂μ(M̂φ)

= φ M M
−1
σμM̂−1[(∂μM̂)φ̂+ M̂(∂μφ̂)]

= φσμM̂−1(∂μM̂)φ̂+ φσμ∂μφ̂

= φσμ[−(∂μM̂
−1)M̂ ]φ̂+ φ∇φ̂

= φ[∇− (∇M̂−1)M̂ ]φ̂, (9.23)

φ
′∇′φ̂′ = φDφ̂, (9.24)
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where we have let

D = ∇− (∇M̂−1)M̂ (9.25)

= σμ[∂μ +
1

2
(pμ − fμσ1 − lμσ2 − aμσ3 + hμiσ1 + gμiσ2 + bμiσ3 − iqμ)].

This introduces 8 space-time vectors that we name “potentials of inertia":

p = σμpμ = σμΓ0
0μ ; f = σμfμ = σμΓ1

0μ ; l = σμlμ = σμΓ2
0μ, (9.26)

a = σμaμ = σμΓ3
0μ ; h = σμhμ = σμΓ2

3μ ; g = σμgμ = σμΓ3
1μ, (9.27)

b = σμbμ = σμΓ1
2μ ; q = σμqμ, (9.28)

D = ∇+
1

2
(p− fσ1 − lσ2 − aσ3 + hiσ1 + giσ2 + biσ3 − iq). (9.29)

If we compare this with the attempts made before quantum physics [37],
two main differences appear: Unification is made not with fields but with
potentials, like in [57]. And the q term does not come from the geometry
of space-time. Einstein had very early the intuition that something was
lacking in quantum mechanics. Here it is the contrary: q is not lacking
in quantum physics but it is lacking in geometry. These eight potentials
become under a dilation R induced by a constant M

D =MD′M̂ ; ∇ =M∇′M̂ ; p =Mp′M̂ ; q =Mq′M̂. (9.30)

The true covariant terms are not f ... b but fσ1... biσ3 since

fσ1 =Mf ′σ1M̂ ; lσ2 =Ml′σ2M̂ ; aσ3 =Ma′σ3M̂,

hiσ1 =Mh′iσ1M̂ ; giσ2 =Mg′iσ2M̂ ; biσ3 =Mb′iσ3M̂. (9.31)

In space-time algebra we shall need

D̂ = ∇̂ − (∇̂M−1)M

= ∇̂+
1

2
(p̂+ f̂σ1 + l̂σ2 + âσ3 + ĥiσ1 + ĝiσ2 + b̂iσ3 + iq̂), (9.32)

D =

(
0 D

D̂ 0

)
; D =

(
0 D

D 0

)
. (9.33)

And the covariant derivative unifying inertia to gauge interactions becomes

D = D+
g1
2
B P 0 +

g2
2
W jP j +

g3
2
GkiΓk. (9.34)

Contrary to all other terms that contains projectors, the term of inertia
acts on the whole wave. This is why we can name the consequences of
the action of D inertial. Another reason is the fact that it is linked to the
geometry of the space-time manifold, even if this link is only partial.



August 28, 2015 13:33 Limit Theorem for Nonlinear-9586 livre_CD_JB page 137

Inertia and gravitation 137

The relation Eq. (9.24) must be seen as reversed: if we exchange the
role of x and x′ by changing M into M−1 we have

x = x′ + dx′ = R−1(x′) =M−1x′M−1† ; dx′ = x− x′ = −dx, (9.35)

xα = x′α − Γα
βγx

′βdx′γ , (9.36)

∂ν = ∂′ν + dx′μΓρ
νμ∂

′
ρ ; φ =M−1φ′, (9.37)

D′ = ∇′ − (∇′M̂)M̂−1, (9.38)

φ∇φ̂ = φ
′
D′φ̂′. (9.39)

The difference between the left and right terms in Eq. (9.39) comes from
the two kinds of frames: inertial versus non-inertial frames. Newton laws
of mechanics and also laws of general relativity separate all frames into two
kinds. Inertial frames are the only frames in which laws of movements are
simple. From an inertial frame in which an event is labeled as x = xμσμ
any other inertial frame labels the same event as x′ = MxM † + a where
a is a fixed space-time vector and M is any fixed element in Cl∗3 . In all
these inertial frames the covariant derivative has the same form Eq. (7.52).
The Lagrangian density is the scalar real part of the wave equation and
the wave equation is obtained by variational calculus from this Lagrangian
density. In all inertial frames the invariance of the Lagrangian density under
the translations x �→ x′ = x + a implies the existence of a conservative
density of impulse–energy. The evolution of this density of impulse–energy
is governed only by electro-weak and strong forces.

But only a few frames are inertial. For instance if x′ = MxM † where
M =M(x) is a variable element, then we are no longer in an inertial frame.
In such a frame we must replace ∇ by D′. Therefore we have additional
forces and not only electro-weak and strong forces. These additional forces
are named inertial forces. We shall study them in two particular cases.

9.1.1 Uniform movement of rotation

We consider a frame at the surface of a sphere, with a fixed third axis
that is parallel to the axis σ3 of the rotation which is also an axis of the
sphere. At the point P the �n vector is normal to the sphere. The first axis
is assumed to be orthogonal to the axis of rotation and in the plane (σ3, �n).
We suppose that (σ1, σ2, σ3) is an orthonormal direct basis. The movement
of the frame at P is made of a movement of translation in the direction
σ2 and a movement of rotation with axis σ3. We name R the distance of
P to the axis of rotation and ω the angular velocity. The velocity of the
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movement of translation is v = ωR. We let

M1 = eδσ2 ; M2 = eωdx0iσ3/2c ; M =M2M1 ; x′ =MxM †, (9.40)

δ =
1

2
atanh(

ωR

c
). (9.41)

And we get

x′0 = cosh(2δ)x0 + sinh(2δ)x2 ; x′3 = x3, (9.42)

x′1 = x1 +
ω

c
[sinh(2δ)x0 + cosh(2δ)x2]dx0, (9.43)

x′2 = [sinh(2δ)x0 + cosh(2δ)x2]− ω

c
x1dx0. (9.44)

This gives

d2x′1

dt2
= ωc sinh(2δ) ≈ ω2R, (9.45)

which is the centrifugal acceleration. The limit to the validity of this ap-
proximation is the same as always in classical physics: the velocity must be
negligible in comparison to c.

9.1.2 Uniformly accelerated movement of translation

We consider here a constant acceleration g = ac2 in the direction σ1
and an M matrix:

v = gt =
g

c
x0 ; M = egdx

0σ1/2c
2

. (9.46)

This gives the transformation:

x′0 = x0 + ax1dx0 ; x′1 = x1 + ax0dx0, (9.47)

x′2 = x2 ; x′3 = x3. (9.48)

And we get

dx′1

dx0
=

d

dx0
(x1 + ax0dx0), (9.49)

d2x′1

(dt′)2
≈ d2x′1

(dt)2
= g +

d2x1

(dt)2
. (9.50)

The acceleration seen in the non-inertial frame is then the sum of the ac-
celeration of the frame and the acceleration coming from any other forces.
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9.2 Wave normalization

The invariance of the Lagrangian under all translations, as in the linear
Dirac theory, induces the existence of a conservative impulse–energy tensor,
the Tetrode’s tensor:

T μ
ν = ∂νψ

∂L
∂(∂μψ)

+
∂L

∂(∂μψ)
∂νψ − δμνL. (9.51)

Since the wave equation is homogeneous, the Lagrangian is null and we get:

T μ
ν =

i

2
(−ψγμ∂νψ + ∂νψγ

μψ). (9.52)

For a stationary state with energy E we have:

ψ = eiEt/�ψ(x); ψ = e−iEt/�ψ(x); ∂0ψ = i
E

�c
ψ; ∂0ψ = −i E

�c
ψ. (9.53)

So we get:

T 0
0 =

i

2
(−ψγ0(i E

�c
)ψ − i

E

�c
ψγ0ψ) = E

J0

�c
. (9.54)

The condition normalizing the wave function must then be replaced by∫∫∫
J0

�c
dv = 1, (9.55)

that is equivalent, for a bound state, to∫∫∫
T 0
0 dv = E. (9.56)

The left term of this equality is the total energy which is the sum of the
local density of energy at each point of the wave, whilst the right term is
the global energy of the electron. Therefore it is not because we must get a
probability that the wave must be normalized. The physical wave is normal-
ized because the inertial mass–energy which is moved by external fields, is
equal to the gravitational mass–energy. The inertial mass–energy has then
not an arbitrary, but a determined value. The necessity to normalize the
wave may then be considered as a consequence of the principle of equality
between inertial and gravitational mass, the principle that is the basis of
general relativity. The presence of a probability density is then not a princi-
ple on which we must build any physical theory; it is only a consequence of
the equality between gravitational and inertial mass–energy. We must also
remark that the bad habit to suppose � = 1 has hidden the correct dimen-
sion of the probability current: since J0 has the numeric dimension 1 and
� has the numeric dimension 4, J0/�c has the correct numeric dimension
−3 of a density of probability.
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All this applies also to the Dirac equation as well as the homogeneous
nonlinear equation which has the Dirac equation as linear approximation.
This normalization applies 1 evidently to solutions in the case of the H atom
that we study in appendix C.

9.3 Gravitation

The global energy E of the electron is the temporal component of a
space-time vector, the energy–momentum vector. Since the integration
has been made in a frame where this momentum is null, this vector reads
(E, 0, 0, 0, ) but it is seen by other moving observers as (p0, p1, p2, p3). Gen-
eral relativity considers all particles of the universe as giving each observer
such an energy–momentum space-time vector, and if there is no pressure
the density of this fluid of particles (d0, d1, d2, d3) constitutes the material
contribution to the symmetric tensor of energy T ν

μ = dμd
ν . Einstein has

linked this material tensor to the curvature of the space-time manifold:
1

χ
[Rρ

μ − 1

2
δρμ(R− 2Λ)] = T ρ

μ , (9.58)

where Λ is the cosmological constant and χ is the constant of gravitation.
We have placed this constant on the left side, then Eq. (9.58) is invariant
under Cl∗3 . The density of mass per unit volume μ0 used in the Newtonian
law of gravitation

ΔU = −4πGμ0 ; χ = 8π
G

c4
, (9.59)

gives, in the case of matter without pressure:

T ρ
μ = μ0c

2uμu
ρ ; uμ =

dxμ

ds
; ds2 = gμνdx

μdxν . (9.60)

The particle with reduced velocity uμ may be an electron, an atom, a star
or a galaxy in the cosmological case. We see no reason to change anything
in General Relativity, as this theory has been successfully tested since a
century ago, and not only in the case of low curvature.

Albert Einstein was searching a total unification between all domains
of our physical universe. This work unifies only the conditions ruling all
physical laws. Inertia and gravitation remain rather separate from other

1. The normalization of the wave of the positron is equivalent, in the case of a
stationary state, to ∫∫∫

T 0
0 dv = −E. (9.57)
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phenomena of our universe. A distinction appears between inertial and non-
inertial frames. Inertial frames are those in which inertia seems absent,
but also frames in which physical laws are simpler. In these frames the
wave equation of fermions has its real scalar part as Lagrangian density.
The invariance of this density under translations allows the existence of a
conservative momentum–energy tensor. This tensor is not symmetric and
is then not included in Eq. (9.58).

There are at least three ideas to account for, if we want to go further:
the first one is the geometric difference between a charge, with numeric
dimension 2, and a proper mass, with numeric dimension 3. The second
idea is: in the quantum world the quantities having the correct relativistic
transformations are tensorial densities, whilst the physical observables are
obtained by integrating these tensorial densities on the physical space. This
was remarked on very early by de Broglie [30]. Since a probability exists also
for systems of quantum objects, since a frequency exists for the global wave
of such a system, and since the equality between inertial and gravitational
mass–energy is general, the reasoning of Sec. 9.2 may be generalized. The
third idea is the fact that the physical space is oriented, like the physical
time. The orientation of the space is ruled by an i that is present in the
fundamental group of invariance of all physical laws, Cl∗3 . On the contrary
this i is not present in the Christoffel symbols of differential geometry,
because the kernel of the homomorphism M �→ R is precisely the group
generated by this i. None of these three things may be changed by any
theoretical manipulation.

The tensor of Eq. (9.52) contains no term relative to the energy of the
electromagnetic field, nor to other gauge fields. This is a direct conse-
quence of the hypothesis of Einstein on the quanta of energy–momentum
in electromagnetic waves [36]. Einstein established later that the fluctu-
ations accounting for black body radiation is the sum of the fluctuations
that we should get if light were only made of discreet particles and if it were
only made of continuous fields. Nowadays these fluctuations are obtained
by counting the number of photons in each mode of the quantized electro-
magnetic wave. It is possible to consider then that the momentum–energy
of the electromagnetic field is entirely included in the symmetric tensorial
density Eq. (9.60) coming from photons. This allows the symmetry of the
gravitational law Eq. (9.58).
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9.4 Unification

T. Socroun follows another way towards the unification [57]: in order
to get the unification between gravitation and electromagnetism, he incor-
porates charges into potentials terms. This is equivalent, in fact, to the
prescription made by Einstein that all laws of physics are covariant. With
Cl∗3 as the fundamental group of invariance the difference between con-
travariant and covariant terms is a physical one: a contravariant vector in
space-time transforms as x while a covariant vector transforms as ∇. These
two transformations are not equivalent as soon as det(M) �= 1. It is easy
to see that incorporation of the charges g1, g2, g3 into the potentials can
be made inside each of our preceding equations:

∇φ̂σ21 + aφ̂+mφ = 0 ; a = qA ; φaφ̂ = φ
′
a′φ̂′. (9.61)

We let [24]

b =
g1
2
B ; wj =

g2
2
W j ; gk =

g3
2
Gk. (9.62)

Then the covariant derivative Eq. (7.52) is simply
D = ∂ + b P 0 + wjP j + gk iΓk. (9.63)

Why this has never been made? The reason is probably that theories of
great unification consider the charges as slowly variable with the scale 2 of
energy and hope that when these charges become equal the structure of
the gauge group is enlarged. This is strictly impossible when charges are
integrated into potential terms.

Now with Eq. (9.61) potential and mass term are similar, they have the
same numeric dimension −1 of covariant terms. This is also the numeric
dimension of an acceleration. With Eq. (9.29) we can consider

D = ∇+
1

2
(p− fσ1 − lσ2 − aσ3 + hiσ1 + giσ2 + biσ3 − iq),

0 = Dφ̂σ21 + aφ̂+mφ, (9.64)
as unifying the dynamics of the wave of the electron, with Lorentz forces
and inertial ones. This is easily extensible to the wave of electron+neutrino
and the wave of electron+neutrino+quarks , with:

D =

(
0 D

D̂ 0

)
; D =

(
D 0

0 D

)
+ b P 0 + wjP j + gk iΓk. (9.65)

We must notice that this unification necessitates none constant. The con-
stant of gravitation links gravitation to inertial acceleration.

2. Quantum physicists have built an axiomatic quantum theory, so as to copy the
method of mathematicians. But they are not embarrassed to use constants of structures
in the calculations of gauge groups that become variables if needed.
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Conclusion

Starting from the old flaws of relativistic quantum mechanics, we re-

sume investigating the insights to the standard model that are allowed

by our new approach with Clifford algebras. Physics using a principle of

minimum is only a part of undulatory physics. Beyond the confrontation

between theory and experiment, beyond future applications, the stan-

dard model appears both comforted and essential. Only novelties are

the magnetic monopoles. Beyond the standard model emerges a new

landscape of waves propagating in the physical space-time.

10.1 Old flaws

The discovery of the spin of the electron goes back to 1926 and was
not predicted by the physical theory. Physicists have very naturally begun
to get round the novelty by trying to reduce spinorial waves to tensors
that were better known. The study was difficult, the field was cleared
by the students of Louis de Broglie, mainly O. Costa de Beauregard [27]
and T. Takabayasi [58]. He was able to give a set of tensorial equations
equivalent to the Dirac equation. These tensorial equations however act
on quantities which are quadratic on the wave. When we add the waves
these tensors do not add. Therefore the spinorial wave itself is essential
from the physical point of view, propagating and interfering. Only the
solutions of the spinorial wave explain quanta, the true quantum numbers,
the true number of bound states and the true energy levels. Let us go to
the end of Takabayasi’s attempt, let us replace completely spinors by a set
of tensors and let us solve completely the tensorial equations in the case
of the hydrogen atom. Should we get the true results, the true number of
bound states, the true quantum numbers and the true energy levels? The

143
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answer is: no, because true representations of the rotation group SO(3)

use only integer numbers, not the half-integer numbers which are necessary
to get the true results. These true results are obtained only by taking the
representations of SL(2,C), but then we are in Cl3.

The second reason why scientists did not understand the novelty of the
spinorial wave was the difficulty of the mathematical tools. Two different
groups may be similar in the vicinity of their neutral element. SL(2,C) and
L↑
+ or their subgroups SU(2) and SO(3) are globally different but locally

identical. So the present study does not use infinitesimal operators, it is
able to see the difference between a Lie group and its Lie algebra.

Physical waves imply the use of trigonometric functions, which in turn
imply the complex exponential function that simplifies calculations. Going
into a very unusual axiomatization, the quantum theory has been locked on
the only use of complex numbers. This is equivalent to working only with
plane geometry, with a unique i with square −1 that is the generator of
all rotations of the Euclidean plane. It is in a sense a "2D software". The
basic tool of the present study is a "3D software", the Clifford algebra of
the 3-dimensional physical space. Next the building of Clifford algebras by
recursion on the dimension allows us to use this basic tool in the algebra of
space-time as in the algebra of the 6-dimensional space-time which is nec-
essary and sufficient for all objects of the standard model. These algebras
present all abilities of the linear spaces built on the complex field, because
they are also linear spaces. But they also allow us to use products. The
exponential function is then everywhere defined and allows us to study a
large variety of wave phenomena. These algebras also allow us to use the
inverse, when it exists.

10.2 Our work

Two kinds of particles, fermions and bosons, are used in the standard
model. Each kind of fermion is a quantum object with a wave following
the Dirac equation. This is the starting point of our work. Following de
Broglie’s initial idea of a physical wave linked to the movement of any par-
ticle, we have first made only a little change in the wave equation of the
electron which concerns only its mass term. This modified wave equation
is nonlinear, homogeneous and has the Dirac equation as a linear approxi-
mation.

First interesting result: the true sign of the mass–energy comes directly
from the wave equation, and from the charge conjugation, which changes
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the sign of the derivative terms of the wave equation. This form of the
charge conjugation was first gotten by the standard model itself, which
uses, for the Dirac equation, the old bad frame of Dirac matrices.

The second result was very difficult, because the resolution of the Dirac
equation is very accurate in the case of bound states of the H atom, and
any change in this wave equation should imply total disaster. But for each
bound state a solution of the linear equation exists such that the Yvon–
Takabayasi β angle is everywhere defined and small. This result is very
accurate and surprising. It means that physical bound states are the rare
solutions of the homogeneous nonlinear equation (see Appendix C). We
can therefore understand why there are privileged bound states and why
an electron in a H atom is always in one of these states, never in a linear
combination of states that is not a possible solution of the wave equation.

A second frame for the Dirac wave was introduced by D. Hestenes, the
Clifford algebra of space-time, which is the second starting point of our
work. A comparison between old and new frame is easy if we use the Dirac
matrices as a matrix representation of the space-time vectors. We have
reviewed in chapters 1 and 2 how the relativistic invariance is gotten for
fermion waves. These waves appear very different: they are not vectors or
tensors of the space-time, but a different kind of object, spinors.

The spinorial form of the fermion wave is included in the standard
model, and it is one of its main features. What we have done here is
only to fully account for all consequences of this fact. The form invariance
of the Dirac equation necessitates the use of the SL(2,C) group that is a
subset of the Clifford algebra of the physical space, Cl3. We have learned
to read all the Dirac theory in this frame. This algebra is isomorphic to
the matrix algebra M2(C) of 2 × 2 complex matrices. This algebra allows
us to see its multiplicative group GL(2,C) = Cl∗3 as the true group of form
invariance of the Dirac theory.

Then we have explained in a simple way how this form invariance, that
is an enlargement of relativistic invariance, rules not only the Dirac wave
equation, but all of electromagnetism (chapter 4). This is well hidden in
the case of the electromagnetic field itself because only the SL(2,C) part
of the Cl∗3 group acts upon this boson field (and this is true of any other
boson field). The electromagnetic field has properties resulting from its
antisymmetric building from a pair of spinors. It is a pure bivector, sum
�E + i �H of a vector �E and a pseudo-vector i �H, with neither scalar nor
pseudo-scalar term. It rotates under a Lorentz rotation but it is insensitive
to the ratio r of a dilation as well as to the chiral angle. This behavior is
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imposed by the form of its invariance under Cl∗3 .
More generally boson fields may be gotten by antisymmetric product

of an even number of fermions. Their wave is then a physical wave, a
function of space and time with value in the Clifford algebra of the usual 4-
dimensional space-time, or of the complete 6-dimensional space-time. Such
a construction was impossible in the old formalism of Dirac matrices, be-
cause the wave had values into a linear space which is not an algebra. The
frame of Clifford algebras allows us to use the internal multiplication and
the inverse to account for waves of systems of particles. This has interest-
ing physical consequences: all waves are true functions of the space-time
into well-defined sets. These sets of functions are the Hilbert spaces whose
existence is supposed in the standard model. Clifford algebras have matrix
representations, and their elements can always be considered as operators.
The use of creation and annihilation operators is a consequence of the fact
that products of an even number of elements belong to the same linear
space.

The form invariance of electromagnetism uses a group which fully ac-
counts for two main aspects of the modern physical results: the conservation
of the orientation of time, and the conservation of the orientation of space.
These two orientations are not a consequence of the invariance group. The
form invariance is only compatible with the conservation of the orientation
of physical space, which is the main experimental discovery of the second
part of the twentieth century. The oriented space is fully compatible with
a gauge group which acts differently on left and right waves. The conserva-
tion of an oriented time is compatible with laws of thermodynamics, with
the emission or absorption of light, and with the propagation of retarded
waves.

The extended form invariance allows a better understanding of old ques-
tions like: why there is a Planck constant? What is a charge, or a mass,
and what is the difference between a charge and a mass? Charges appear
in terms necessary to link a contravariant vector such as A to a covariant
vector such as qA or to link a ∇Âj term to a q(AkÂl − AlÂk) term of a
Yang–Mills gauge group. The invariance under Cl∗3 necessitates q = r2q′.
Mass appears in a term necessary to link a differential term to a constant
term in the invariant wave equation. The invariance under Cl∗3 necessitates
m = rm′. Therefore a charge is not a mass, a mass is not a charge: they
have a different behavior under Cl∗3. These new aspects of old concepts
come from the supplementary strains added by a greater invariance group.
They are fully compatible with classical and relativistic mechanics and with
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laws of electromagnetism.
Anything in the previous review is compatible with the experimental

part of the standard model, and also with the CPT theorem which is now
trivially satisfied. Nevertheless several bad habits must be avoided. For
instance the Planck factor linking proper mass to frequency is variable if
we consider the full invariance group. This is completely hidden if the
Planck factor is changed into a constant number: we must put back the
� term everywhere it is necessarily present. Tensors constructed from the
Dirac waves with Dirac matrices do not have a behavior allowing the full
invariance group. This implies we must use Clifford algebras, which are
the only frames where the full invariance group acts. Another bad habit
to abandon is the habit of going up or down an index of tensor, because
covariant and contravariant vectors vary differently under the full invariance
group.

If you have paid the price of accounting for the full invariance group
you are able to get much in return. The first award is the possibility to
read the electro-weak theory in a much simpler way, with a wave which is
a function of space-time into a Clifford algebra: firstly of the usual space-
time if you account only for the electron-neutrino case and secondly of a
6-dimensional space-time to account for all fermions and all anti-fermions
of one generation. In this enlarged frame the gauge group is exactly the
U(1) × SU(2) × SU(3) group of the standard model, the lepton part of
the complete wave sees only the U(1) × SU(2) part of the gauge group.
Therefore electron and neutrino are automatically unable to see strong
interactions and the right wave of the neutrino does not interact at all. A
greater gauge group is not available, this accounts for the fact that no way
exists to transform a quark into a lepton. Then this justifies the empirical
construction, in the standard model, of conservative quantum numbers such
as the baryonic number. Another award is the ability to understand the
existence of both exactly three generations of fermions, completely similar
and having nevertheless a separate behavior in the gauge invariance and
the Lagrangian formalism, and four kinds of neutrinos.

The generalization to the complete wave of the geometric dilation linked
to the electron wave is possible only if two additional dimensions are added 1

to the three usual dimensions of the physical space. The reward to this

1. We used in [17] two greater Clifford algebras, Cl2,3 and Cl3,4, which cannot allow
the relation Eq. (7.73) between the reverse in space-time algebra and the reverse in the
complete algebra. Relation Eq. (7.73) implies we should use only Cl5,1, or Cl1,5 but it
happens to be the same algebra.
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new strain on the theory is that this construction includes all parts of the
standard model in a closed frame. Moreover the usual space-time is a
well bounded part of the complete space-time, bounded by the fact that
usual space-time is real in a complete space-time with a natural complex
structure. A second reward is a unique dimension for the time in the
complete space-time, this time is then our usual oriented time, oriented
from past to future. Another reward is a much more general geometric
transformation between the 6-dimensional space-time and the usual space-
time, as soon as neutrinos and quarks are considered. The study of the
wave of all fermions of the first generation introduces, at each point of the
space-time, a geometric transformation from one manifold into the other
one. With the complete wave the intrinsic manifold is 6-dimensional and the
relative 4-dimensional space-time seems embedded into the 6-dimensional
manifold.

Our nonlinear homogeneous wave equation for the electron is twice
generalized, firstly as a wave equation with mass term for the elec-
tron+neutrino. This wave equation is both form invariant under Cl∗3 and
gauge invariant under the gauge group of electro-weak interactions. This
wave is then extended to a wave for electron+neutrino+quarks. The wave
equation is both form invariant under Cl∗3 and gauge invariant under the
gauge group of the standard model. The linear mass term of the Dirac
equation was not able to give a wave equation compatible even with the
electro-weak gauge. Now since we do have such an invariant wave equation
with mass term, we are directly able to consider inertia and gravitation.
Inertial frames are obtained with R transformations defined by any con-
stant M element in Cl∗3 while other frames are obtained with variable M
elements. The principle of equivalence between inertial and gravitational
mass–energy is the origin of the normalization of the wave and of the den-
sity of probability. The proper mass–energy of the electron-particle is the
integral over all space of the density of mass–energy of the electron-wave.
This mechanism gives the symmetric tensor of impulse–energy of General
Relativity.

10.3 Principle of minimum

Modern physics uses everywhere a principle of minimum. This was first
seen by Fermat. He understood that light travels in such a way that the
duration of the travel between two points is minimal. This was next seen
in Hamiltonian mechanics, where the movement of any object is made in
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a way such that a quantity called action is minimal. These two principles
of minimum were united by de Broglie and this led him to discover the
wave linked to the movement of any material particle. So the Dirac wave
equation of an electron or other fermions may also be gotten from such a
principle of minimum. But why?

Clifford algebra and the form invariance group give a strange answer.
The true wave equation of a unique fermion is the invariant form of the
wave equation. And then the scalar part of this wave equation is exactly
the Lagrangian density. This Lagrangian density is not truly minimal. In
fact, it is exactly zero, because the wave equation is homogeneous. The
second part of the answer comes from the fact that you can get the seven
other equations by using the calculus of variations. This is probably not
very correctly done, because an assumption is made that the infinitesimal
variation of the wave is null on a boundary of the integration volume. It
is easy to get this assumption in the case of a bound state, but nobody
proved that it is always possible for a propagating wave. Since the true
link between the Lagrangian density and the wave equation is not what we
thought, an error there is not easily seen. The most important consequence
is that the wave is more general than the principle of minimum: it is easy
to get wave equations which cannot be obtained from a Lagrangian density
(see Sec. 5.3). The Lagrangian density as real scalar part of the wave
equation is our Ariadne’s thread: The double link remains when we change
the linear Dirac equation into our homogeneous nonlinear equation. Next
it remains when we go from the wave equation of the electron alone into
the equation of the electron+neutrino pair. It remains again when we go to
the wave of electron+neutrino+quarks. The thread also allows us to find
the true mass terms, for the case electron+neutrino and also for the case
electron+neutrino+quarks.

Another part of this strange answer is the non-equality between the
light speed as limit speed of any Dirac wave and the limit speed of other
waves. We have gotten a limit speed different from the light speed in the
frame of a wave equation coming not from a Lagrangian density.

And the Lagrangian domain of physics is actually not a very big domain.
For instance in the Lagrangian formalism of quantum electrodynamics all
Maxwell laws are thought to result from the Lagrange equations. But this
is false, because the link between potentials and fields is postulated to
simplify the second-order wave equations. The same remark was first made
by de Broglie himself in his theory of the photon, where two Lagrangian
densities are necessary to get all Maxwell laws. Then what is the true
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energy–momentum of the electromagnetic field? Usually physicists consider
�E2+ �H2 as giving the density of energy. This is generalized in Fμν

a F a
μν in the

case of a non-commutative gauge group. If the relation between potentials
and fields comes also from a Lagrangian mechanism which is associated to
another energy–momentum tensor, that quantum electrodynamics does not
account for. If not, what proves that the energy–momentum tensor coming
from the Lagrangian density is the true one? Is the Lagrangian formalism
itself, with its reversible time, compatible with the transport by photons of
energy–momentum?

10.4 Theory versus experiment

The world of the particles with magnetic charges is different and we
are, in terms of the knowledge of this new world, probably no wiser than
Colombus after his first journey. We know it exists and this is already
something.

The two parts of this book, the theoretical part formed by nine chapters
and three appendices, and the experimental part in one modest chapter,
seem at the same time disconnected and disproportionate. We can expect
that more experiments will discover many new properties of the magnetic
world.

These two parts are however doubly linked. Firstly probabilities, essen-
tial in quantum theory, are very discreet here. In our powders, randomness
does not seem to play a very big role. When titanium is transformed at some
place, all that can be transformed is changed. Randomness may be the rea-
son why results are variable, but getting copper instead of iron, chromium
instead of manganese, this can also come from differences in temperature,
pressure, duration of the discharge and so on. We know nothing until now
about that.

The second link between our two parts is: space-time is different from
what we thought it was. In the theoretical part we explained how a second
space-time manifold appears, anisotropic, and how the spinor wave makes
a bridge between these two manifolds. This bridge can be extended to
the 6-dimensional space-time which allows us to describe electro-weak and
strong interactions. The usual space-time is not the fundamental entity;
it is only a part, well defined, of a complete space-time where complex
numbers appear naturally. The geometric transformation linked to the
wave contains a sum of direct and of inverse dilations. It is then very
different from simple Lorentz rotations. Geometric transformations are



August 28, 2015 13:33 Limit Theorem for Nonlinear-9586 livre_CD_JB page 151

Conclusion 151

only induced by elements of a group coming from the space algebra. They
appear as secondary objects, the fundamental one being the wave.

In the experimental part also space seems very different from what we
thought, since kernels of atoms that we think are separated by huge dis-
tances in comparison with their own sizes, seem able to put together their
nucleons and to reallocate them as if the distance between them was in-
significant.

10.5 Future applications

What will be the applications of magnetic monopoles is also a premature
question and what we are able to imagine today will probably have little
in common with the very practical applications which will come out of
laboratories in the future.

Urutskoev who is a nuclear physicist thinks to new nuclear reactors,
intrinsically safe, driven by very intense magnetic fields. Another exciting
possibility is that magnetism may be linked to gravitation. There are some
theoretical hints there, because G. Lochak [51] has explained that it is a
magnetic photon which is linked to the graviton in the fusion theory of
Louis de Broglie.

A third kind of possible practical consequence is about geology. The
magnetic monopole of G. Lochak is a kind of excited neutrino. The Sun can
produce magnetic monopoles which will arrive on our Earth, mainly at the
magnetic poles. This was experimentally satisfied [1]. These monopoles are
likely to induce the same transformations we see in the laboratory, notably
producing hydrogen. This may change the process of fossilization and the
creation of deposits.

Evidently if magnetic monopoles are produced in the heart of the Sun,
they are able to produce effects on magnetic fields. The study of the mag-
netic monopoles is perhaps the best way to progress in the comprehension
of our Sun.

We can also have a good idea of what will never allow the double space-
time manifolds. The existence of a second space-time manifold changes
nothing in the properties of the first manifold, the one in which we move
and observe our universe. We must then not dream of things we know
are forbidden by physical laws, such as overshooting the limit speed. Ac-
celerating until this limit remains impossible because the mass approaches
infinity when the speed approaches the limit even if this limit is not neces-
sarily equal to the speed of light in the vacuum. Another restriction which
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has no chance of changing is the one linked to the time arrow. Any journey
back into past will stay forbidden since the invariance group conserves the
orientation of our time.

10.6 Improved standard model

The different parts of the work that we present here are strongly inter-
acting and reinforce one another. The Cl∗3 group is easier to see from the
invariant form Eq. (3.1) of the wave equation. The behavior of the mass
term used in chapter 4 is a sufficient reason to prefer the nonlinear homo-
geneous wave equation to its linear approximation, the Dirac equation. We
got also the electro-weak gauge group in a much simpler way. It was easy
to extend this model from the lepton sector to the quark sector. We can
explain not only why there are three completely similar generations (and
four 2 neutrinos), but also why the different generations must be separately
treated in the gauge theory. We can explain why the complete gauge group
is the U(1)×SU(2)×SU(3) gauge group found from experiments and why
the SU(3) gauge group does not act upon the lepton part of the complete
wave, which has been postulated before. The link between the wave and
the space-time geometry is reinforced by the fact that this link survives to
the extension of the wave to all fermions of a generation, which necessitates
the use of two supplementary dimensions of space. The generalization of
the geometric transformation necessitates the use of the link between the
wave of the particle and the wave of the anti-particle. From the physical
point of view this changes the meaning of the charge conjugation. From
the mathematical point of view this divides by two the number of param-
eters, then the dimension n of the space-time is reduced to n − 1. The
criterion of simplicity then induces a preference for the algebra Cl1,5. Then
the manifold of space-time appears as embedded into a manifold with two
supplementary dimensions of space.

A greater invariance group implies strong new strains. These new strains
imply a better understanding of old concepts and indicate the only way to
go further. For instance the relation φ′ = Mφ is not new, it was used in
equivalent form since the Pauli equation in the 1920s. But it indicates to
us that the relation between the φ wave and the Weyl’s spinors ξ and η is
invariant, that the right and left parts of the wave are invariant, and that
M and φ are similar. When you know that, it is evident that the wave of

2. The fourth neutrino is not able to interact by the electro-weak or strong force, it
is then a part of dark matter.
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a pair electron-neutrino must read Ψl =

(
φe φn
φ̂n φ̂e

)
, and this equality gives

then the form of the projectors Pμ. Next these projectors have naturally
the U(1)× SU(2) structure of the electroweak gauge group. It is also easy
to get the charges of quarks u and d simply by changing P0 to P ′

0, changing
only one coefficient from 1 into −1/3. All values of the charges of quarks are
obtained by the choice of only one number, and the value of this number
is necessary to simplify the operator of the chiral gauge. We recall that
these values of the charges explain why the charge of the proton is exactly
opposite to the charge of the electron, why the charge of the neutron is
zero, and therefore why the electric charge of any unionized atom is zero.

Strains coming from the invariance group imply also that you have only
one simple way to get a wave with all fermions of one generation, which

is Ψ =

(
Ψl Ψr

Ψg Ψb

)
. But after that if you want to have the same link as

before between the wave and the geometry of space-time, it is necessary to
dispose of Eq. (7.73). This in fact requires to use the link Eq. (2.90), well
known in the standard model, existing between the wave of the particle
and the wave of the antiparticle. This link restricts the value of the wave
from Cl2,3 = M4(C) to its sub-algebra Cl1,3 and from Cl5,2 = M8(C) to
its sub-algebra Cl5,1. It happens that this Clifford algebra is isomorphic
to Cl1,5 and this isomorphism is both the reason why the non-isomorphic
sub-algebras Cl1,3 and Cl3,1 are equally used, and a reason to be more
confident of the standard model and its precepts issued from a long history
of experiments. Another reason to be confident both in the standard model
and in the use of Clifford algebra is the link between the cancellation of
right waves, except the electron wave, and the existence of a mathematical
inverse, used to build waves of systems. This should allow us to build the
wave of a proton or a neutron from their internal quarks.

Questions asked of the initial quantum theory are today nearly forgot-
ten. Why there is a Planck constant and why there are complex numbers
were two of them. Since nobody had a clear and simple answer, these ques-
tions were put “under the table”. The existence of the Planck factor, which
links proper mass to frequency of the wave, is directly linked to supple-
mentary strains of the invariance group. Complex numbers are also simply
explained, first by the isomorphism between Cl3 and the algebra generated
by Pauli matrices, next by the matrix representation of Cl1,3, finally by
the matrix representation of Cl1,5. This algebra is isomorphic to a sub-
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algebra of the algebra M8(C) of 8 × 8 matrices on the complex field. The
complete wave is then a function of the space-time with value into Cl1,5,
this justifies most of the mathematical apparatus of the standard model.
From the physical point of view, this allows us to build the boson fields by
antisymmetric products of fermions in even numbers.

New strains used here also explain why old attempts were not successful.
We think to the numerous attempts made in the 1930s to unify mechanics
and electromagnetism. Such a unification is limited by the fact that a charge
is not a mass when you use the full invariance group. Another attempt,
made to unify the different parts of the U(1)×SU(2)×SU(3) gauge group
as subgroups of SU(5) or SO(10) had no more success, predicting a possible
disintegrating proton which was not experimentally found. The structure
of the gauge group comes from the structure of the complete wave and does
not change when you increase the energy. The structure of the wave is then
fully compatible with protons without disintegration, and more generally
with all known aspects of modern physics.

The standard model shall remain so more essential because the wave
equations with a mass term are compatible both with the form invariance
and with the gauge invariance. This makes the spontaneously broken sym-
metry useless.

10.7 Algorithmic and data structures

Even if the big accelerators of particle physics are today inseparable
from the software necessary to get and treat an enormous quantity of data,
the theory of the standard model is old and was made in a world without
computers. Today all students learn algorithmic and data structures, but
the consideration of data structures was not known when quantum field
theory was growing. Then nothing was made to secure the formalism of
bra and ket. The spirit of the second quantification is to consider only
algorithms and calculations, and to refuse any consideration about things
that are used in these calculations. It is a software with algorithmic but
without data structures!

Our work proves that the objects used in the standard model are nu-
merous and different. Then it shall be certainly necessary to think about
them. The wave of the electron is a function of space-time in the Clifford
algebra of space (8-dimensional), with numeric dimension 1/2. It is not at
all the same object as the wave of a photon, which is a composite object
made of a space-time vector potential and a bivector field. The idea of a
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set of bra and ket working indifferently on waves of electrons and quarks as
well as systems of them and photons and Z0 and gluons as well as systems
of them is a purely theoretical dream. It is in fact impossible to apply the
same calculations to photons needing symmetrization and electrons needing
anti-symmetrization. Even with the names ket and bra it is impossible to
treat globally the different things that are fermions and bosons.

The correct use of the different data structures gives not only new
strains. It also brings understanding. Why does the Dirac theory take
place in Cl3 when it should be in a relativistic frame? Why is the invariance
group Cl∗3 and no more? Why are there three generations of fundamental
fermions and no more? To these questions the response comes from data
structures: the 3 is simply the dimension of the physical space, this means
the number of real numbers necessary to describe a point. Next the 8 that
is the number of parameters of the Dirac wave and the dimension of the
invariance group is 23 and comes from a general link between dimension of
the linear space and dimension of the algebra built on this linear space. The
presence of complex numbers in physics also results from data structures,
since it comes from the isomorphism between the Clifford algebra of space
and the algebra of 2× 2 complex matrices.

Space and time take place in Cl3, but this is made in a very precise
part of this algebra, the self-adjoint part. From this a link results between
the reversion in the Clifford algebra of space-time and the reversion in the
algebra of space. Since this reversion in Cl3 is the adjoint matrix, this
conjugation has had a great place in quantum theory, giving the hermitian
and unitary theory. But the algebra of space, even if it is sufficient to
study the electron alone, is not the only data structure to consider. Two
homomorphisms exist from Cl∗3 into the group of dilations on space-time.
This is why left and right waves exist. Since these homomorphisms respect
the orientation of the space and the orientation of the time, all physical
laws are made of this oriented space and of this oriented time.

The group of invariance induces many consequences. The strains com-
ing from the different variances, covariance, contra-variance, invariance,
half-variance of the wave, are summarized in the numeric dimension. This
concept, since it comes from the invariance itself, rules all parts of the phys-
ical reality. The concept of numeric dimension is not arbitrary: General
Relativity is based on physical lengths whilst differential Geometry is based
on real numbers. Necessarily something must compensate this difference.
Our definition of the numeric dimension simply gives the dimension 1 to
any length in space (or time). The product-measure gives then the dimen-



August 28, 2015 13:33 Limit Theorem for Nonlinear-9586 livre_CD_JB page 156

156 The standard model of quantum physics in Clifford Algebra

sion 2 for surfaces, the dimension 3 for volumes in space and the dimension
4 for volumes in space-time. The derivation uses a quotient, then a numeric
dimension −1 is added for each derivation. It results that an acceleration
has dimension −1 since it is the derivative of a velocity, the quotient of a
length of space by a length of time, with numeric dimension 0. And so on...
Moreover the integration over the space links the Lagrangian density of
the quantum wave to the Lagrangian of the particle in relativistic mechan-
ics. Then the proper mass of this Lagrangian has necessarily the numeric
dimension 3 that has been obtained by supposing that gauge fields have
numeric dimension 0. We could have obtained this dimensionality 0 from
other considerations. For instance all gauge fields are boson fields. This
means that the waves of 2, 3,... n photons are similar and may be added.
Since the general rule to get the wave of systems of particles is the mul-
tiplication of the waves, each wave has necessarily the numeric dimension
0.

The Clifford algebra of space-time is built on a 4-dimensional linear
space. It is then 16-dimensional. This 16 = 24 is also a 4× 4 that has given
for instance the Majorana real matrices or the 4×4 complex matrices of the
Dirac equation. Unhappily for them it is 24 that is important and general,
and 4 × 4 is only an accidental coincidence. All laws of electromagnetism
take place naturally in space-time algebra and this may be extended to the
quantum wave of electron+neutrino, and then to electro-weak interactions.
It happens that the quantum wave is not only reserved to a lone particle, it
concerns also systems of particles. Then the wave must be invertible, and
is is much easier to get such an invertible wave for an electron+neutrino
pair if a neutrino has only one of the two possible right and left waves. And
this is exactly what happens since the neutrino has only a left wave.

The double link between Lagrangian density and wave equation makes
that most of the information present in one equation, the scalar one, gives
the other equations. This also may be considered as a mathematical acci-
dent, because if a similar wave equation with operator ∂∂∂ is used with another
structure of space-time, the double link is not automatic. We must be not
too confident from the fact that the double link exists for the electron alone,
for electron+neutrino, and for electron+neutrino+quarks. First it is only
one wave equation with particular cases. Next the dimension and signature
of Cl1,5 is not any dimension and not any signature. Two supplementary
dimensions, not only one, are necessary for embedding all solutions of the
equations of General Relativity. It is the same in the quantum domain,
we could not have obtained the U(1) × SU(2) × SU(3) gauge group in a



August 28, 2015 13:33 Limit Theorem for Nonlinear-9586 livre_CD_JB page 157

Conclusion 157

Clp,q with p + q < 6. Next more than two supplementary dimensions are
difficult to manage and still obtain correct physical results, this comes from
the necessary link between reversions in the different algebras.

The form of the wave equation itself is not just anything: the differential
term is linear and linear applications are the natural first approximation
of any more complicated equation with derivatives. Next the invariance
under Cl∗3 adds so many new strains that the partial differential operator
is necessary: a ∇ = σμ∂μ, or a ∂∂∂ = γμ∂μ, or a ∂ = Lμ∂μ, respectively in
Cl3, Cl1,3 or Cl1,5. The form of the gauge invariance itself implies that
linear transformations must also be used there. In space-time algebra, 16-
dimensional, the linear space of all linear transformations of Cl1,3 into Cl1,3
is 256-dimensional. It happens that the 256 transformations Ψ �→ AΨB

where A and B are generators of Cl1,3 form a basis of this linear space.
Then any linear transformation is necessarily a linear combination of these
transformations. This gives the necessary form of the gauge derivative.

The difference existing between right and left multiplication has an ex-
ception since the i of Cl3 commutes with any element of this algebra. This
has a great implication in the electro-weak theory: it is just this part of the
gauge group that separates leptons from quarks, just as it is this part of
the inertial potentials that is present in the quantum world but is absent in
differential geometry. Consequently it is impossible to reduce the quantum
world to differential geometry.

10.8 Beyond the standard model, back to physical reality

This work is more similar to Einstein’s views than to those of the Copen-
hagen school. Waves obeying partial differential equations may be consid-
ered as deterministic. A probability density exists, but it is only a derived
consequence of the equality between inertial and gravitational mass–energy.
Moreover this density of probability concerns both electron and neutrino
in the lepton case. In the quark case we get a second density of probabil-
ity, but is a also a sum of 6 currents, for two quarks in three color states
each. A lot of work has been done on Bell’s inequalities and their invalida-
tion. Bell’s inequalities, as predicted, are violated. This proves only that at
least one of the numerous conditions giving these inequalities is false. We
have the right to think that the first of these false conditions was believing
that the wave of two electrons, and a fortiori two photons, must obey a
Schrödinger equation for a function with value in the complex field, with a
probability equal to the square of the modulus of this complex value. The
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wave equations that we have found do not reduce to the Schrödinger equa-
tion. To get the physical wave equation of two electrons or two photons is
a very difficult problem that must still be solved.

The standard model present many aspects that have induced to search
beyond. There are too many suppositions, too many parameters. This
study has reduced the number of parameters, for instance we have only one
parameter giving all charges of quarks and only 6 mass parameters for all
leptons and quarks of the three generations, and only 3 wave equations for
all that. Then the need to search “beyond the standard model” is rather
reduced. We have explained why the attempts of "great unification" with a
gauge group simpler than the group of the standard model could not have
succeeded. Theories of chords with many supplementary dimensions will
also have problems with the reversion. The super-symmetry transforming
fermions into bosons is also completely out of the frame of this work. This
implies that we await no new particle or system of particles. The only
new objects that remain to study are then the magnetic monopoles. As
this study is only beginning, inventive researchers may obtain interesting
results without needing much money.

Theories of chords, branes, supersymmetry and other attempts made
to include gravitation in the frame of quantum physics were unlucky: they
were based on old concepts coming from the beginning of quantum me-
chanics as a non-relativistic theory, while electromagnetism, weak inter-
actions, strong interactions, gravitation are all based on relativistic waves
and relativistic invariance. All these attempts are also based on a unique
Lagrangian that is thought of as the origin of all partial differential equa-
tions. This is also a false track because Lagrangians are consequences of
wave equations of fermions, and only for one fermion and only in an inertial
frame. A third false track is unitarity; the true one is reversion, and it is the
same only in Cl3. The use of a greater invariance group is enough to gather
gravitation, electromagnetism, weak interactions and strong interactions in
the same frame.

In the domain of particle physics, we have still many things to under-
stand and parameters to measure precisely. The response that we have
made about the three generations is only a theoretical response. Physical
quarks in the protons and the neutrons seem much more complicated and
not exactly in one unique generation. This may come from the fact that
the three terms at the right of the differential term in Eq. (7.111) are not
orthogonal.

What about the particle-wave dualism? The Dirac equation and our
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new wave equations are partial derivative equations of the first order and
describe the evolution of waves. The only part of this work where the
electron appears as a particle is when we use the equality between inertial
and gravitational mass–energy. After integration to the physical space of
the density of energy of the wave, the non-symmetric energy–momentum
tensor of the wave gives the momentum–energy space-time vector of the
electron-particle. We know no other reason for the coexistence in the elec-
tron wave of an electron-particle. But we also have no reason to pretend
that the energy of the electron cannot be concentrated in a little portion
of the wave.

We have studied only the most simple part of the standard model, the
fermion wave. We know that it will be necessary to understand also the
boson part of the physical world. It is a much more complicated problem:
a boson like a photon, Z0 or gluon is a composite object with a potential
term that is a space-time vector and that has the numeric dimension 1,
and a bivector field with numeric dimension 0. Therefore a lot of work will
be necessary to fully understand what bosons are and how they interact
with the fermion and boson parts of our physical Universe. We have more
questions without answer than questions with them. For instance we saw
two ways to get a wave with numeric dimension 0 from waves with numeric
dimension 1/2. One of them was described in chapter 4: m(φ2φ1 − φ1φ2);
the other was described in chapter 5: φ12 = φ1σ1φ

−1
2 −φ2σ1φ−1

1 . These two
ways use the Pauli principle of anti-symmetrization. Are these waves simi-
lar, can we add them? Shall we understand why we must anti-symmetrize
spinor waves?

The quest continues.
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Appendix A

Calculations in Clifford algebras

A.1 Invariant equation and Lagrangian

Let M be an invertible matrix element of Cl∗3, with determinant reiθ.
Let R and R be Lorentz dilations such as :

R : x �→ x′ = R(x) =MxM † ; R : x �→ x′ = R(x) =MxM̂. (A.1)
Let P be the matrix such as:

M =
√
rei

θ
2P, (A.2)

and let L and L be dilations such as :
L : x �→ x′ = L(x) = PxP † ; L : x �→ x′ = L(x) = PxP̂ . (A.3)

We have:
reiθ = det(M) =MM =

√
rei

θ
2P

√
rei

θ
2P = reiθPP. (A.4)

We get then
PP = 1 ; P = P−1 ; L = L−1. (A.5)

P is then an element of SL(2,C) and L is a Lorentz rotation. We know,
for such a rotation, that:

g =

⎛⎜⎜⎝
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

⎞⎟⎟⎠ (A.6)

where g is the signature-matrix. Denoting (L) the matrix of L in an or-
thonormal basis and M t the transposed 1 matrix of M :

(L)−1 = g(L)tg ; (L)g = g(L)t. (A.7)

1. The transposition exchanges lines and columns of matrices: if M =

(
a b
c d

)
then

M t =

(
a c
b d

)
. We have, for any matrices A and B, (AB)t = BtAt and det(At) = det(A).
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But we have also:

R(x) =MxM † =
√
rei

θ
2Px

√
re−i θ2P † = rPxP † = rL(x), (A.8)

therefore

R = rL ; (R) = r(L). (A.9)

We have also:

R(x) =MxM̂ =
√
rei

θ
2Px

√
re−i θ2 P̂ = rPxP̂ = rL(x), (A.10)

R = rL ; (R) = r(L). (A.11)

Multiplying Eq. (A.7) by r we get :

(R)g = g(R)t ; (R) = g(R)tg, (A.12)

which gives for j = 1, 2, 3 and k = 1, 2, 3:

R
0

0 = R0
0 ; R

j

0 = −R0
j ; R

0

j = −Rj
0 ; R

k

j = Rj
k. (A.13)

Consequently lines as well as columns of the matrix Rν
μ are orthogonal,

because we have, for R and R:

Rμ =MσμM
† = Rν

μσν ; Rμ =MσμM̂ = R
ν

μσν , (A.14)

Rμ · Rν = Rμ · Rν = δμνρ
2, (A.15)

where δ00 = 1, δ11 = δ22 = δ33 = −1, δμν = 0 if μ �= ν. We have

φAφ̂ = Aμφσμφ̂ = A0D0−
j=3∑
j=1

AjDj = A0(D
μ

0σμ)−
j=3∑
j=1

Aj(D
μ

j σμ). (A.16)

But the link between the Dμ and Dμ is the same as between Rμ and Rμ

and we get with Eq. (A.13) for j = 1, 2, 3 and k = 1, 2, 3:

D
0

0 = D0
0 ; D

j

0 = −D0
j ; D

0

j = −Dj
0 ; D

k

j = Dj
k, (A.17)

which gives

φAφ̂ = A0(D
0

0 +

j=3∑
j=1

D
j

0σj)−
j=3∑
j=1

Aj(D
0

j +

k=3∑
k=1

D
k

jσk) (A.18)

= A0(D
0
0 −

j=3∑
j=1

D0
jσj)−

j=3∑
j=1

Aj(−Dj
0 +

k=3∑
k=1

Dj
kσk) = AνD

ν
μσ

μ.

The scalar part is then

〈φAφ̂〉0 = Dν
0Aν = AμJ

μ. (A.19)
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The corresponding term with the Dirac matrices is
1

2
[(ψγμqAμ)ψ) + (ψγμqAμψ)

†]

=
q

2
Aμ[ψγ

μψ + (ψγμψ)] = qAμψγ
μψ = qAμJ

μ. (A.20)

We get next
1

2
[(ψγμ(−i)∂μψ) + (ψγμ(−i)∂μψ)†] = i

2
(−ψγμ∂μψ + ∂μψγ

μψ)

=
i

2
[−ξ†∂0ξ − η†∂0η + (∂0ξ

†)ξ + (∂0η
†)η] (A.21)

+
i

2

j=3∑
j=1

[−ξ†σj∂jξ + η†σj∂jη + (∂jξ
†)σjξ − (∂jη

†)σjη]

which gives

− i[(ψγμ(−i)∂μψ) + (ψγμ(−i)∂μψ)†] = (A.22)

ξ1∂0ξ
∗
1 + ξ2∂0ξ

∗
2 + η1∂0η

∗
1 + η2∂0η

∗
2 − ξ∗1∂0ξ1 − ξ∗2∂0ξ2 − η∗1∂0η1 − η∗2∂0η2

ξ1∂1ξ
∗
2 + ξ2∂1ξ

∗
1 − η1∂1η

∗
2 − η2∂1η

∗
1 − ξ∗1∂1ξ2 − ξ∗2∂1ξ1 + η∗1∂1η2 + η∗2∂1η1

− i(−ξ1∂2ξ∗2+ξ2∂2ξ∗1+η1∂2η∗2−η2∂2η∗1−ξ∗1∂2ξ2+ξ∗2∂2ξ1+η∗1∂2η2−η∗2∂2η1)
ξ1∂3ξ

∗
1 − ξ2∂3ξ

∗
2 − η1∂3η

∗
1 + η2∂3η

∗
2 − ξ∗1∂3ξ1 + ξ∗2∂3ξ2 + η∗1∂3η1 − η∗2∂3η2.

In the Pauli algebra we have

φ(∇φ̂)σ21 = 2i

(
η∗1 η∗2
−ξ2 ξ1

)(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(−η1 −ξ∗2
−η2 ξ∗1

)
, (A.23)

and with Eq. (2.74) we get

φ(∇φ̂)σ21 =

(
w3 + w0 − iv3 − iv0 v2 + iv1 + iw2 − w1

v2 − iv1 + iw2 + w1 w3 − w0 − iv3 + iv0

)
= (A.24)

2i

⎛⎜⎜⎜⎜⎝
η∗1(−∂0η1+∂1η2−i∂2η2+∂3η1) η∗1(−∂0ξ∗2−∂1ξ∗1+i∂2ξ∗1+∂3ξ∗2)
+η∗2(−∂0η2+∂1η1+i∂2η1−∂3η2) +η∗2(∂0ξ

∗
1+∂1ξ

∗
2+i∂2ξ

∗
2+∂3ξ

∗
1)

−ξ2(−∂0η1+∂1η2−i∂2η2+∂3η1) −ξ2(−∂0ξ∗2−∂1ξ∗1+i∂2ξ∗1+∂3ξ∗2)
+ξ1(−∂0η2+∂1η1+i∂2η1−∂3η2) +ξ1(∂0ξ

∗
1+∂1ξ

∗
2+i∂2ξ

∗
2+∂3ξ

∗
1 )

⎞⎟⎟⎟⎟⎠ .
This gives

w3 + w0 − iv3 − iv0 = 2i(−η∗1∂0η1 − η∗2∂0η2 + η∗1∂1η2 + η∗2∂1η1
−iη∗1∂2η2 + iη∗2∂2η1 + η∗1∂3η1 − η∗2∂3η2), (A.25)

w3 − w0 − iv3 + iv0 = 2i(ξ2∂0ξ
∗
2 + ξ1∂0ξ

∗
1 + ξ2∂1ξ

∗
1 + ξ1∂1ξ

∗
2

−iξ2∂2ξ∗1 + iξ1∂2ξ
∗
2 − ξ2∂3ξ

∗
2 + ξ1∂3ξ

∗
1), (A.26)
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v2 − iv1 + iw2 + w1 = 2i(ξ2∂0η1 − ξ1∂0η2 − ξ2∂1η2 + ξ1∂1η1

+iξ2∂2η2 + iξ1∂2η1 − ξ2∂3η1 − ξ∗1∂3η2), (A.27)

v2 + iv1 + iw2 − w1 = 2i(−η∗1∂0ξ∗2 − η∗2∂0ξ
∗
1 − η∗1∂1ξ

∗
1 + η∗2∂1ξ

∗
2

+iη∗1∂2ξ
∗
1 + iη∗2∂2ξ

∗
2 + η∗1∂3ξ

∗
2 + η∗2∂3ξ

∗
1). (A.28)

Adding and subtracting Eq. (A.25) and Eq. (A.26) we get

w3 − iv3 =− iη∗1∂0η1 − iη∗2∂0η2 + iξ2∂0ξ
∗
2 + iξ1∂0ξ

∗
1

+ iη∗1∂1η2 + iη∗2∂1η1 + iξ2∂1ξ
∗
1 + iξ1∂1ξ

∗
2 (A.29)

+ η∗1∂2η2 − η∗2∂2η1 + ξ2∂2ξ
∗
1 − ξ1∂2ξ

∗
2

+ iη∗1∂3η1 − iη∗2∂3η2 − iξ2∂3ξ
∗
2 + iξ1∂3ξ

∗
1

w0 − iv0 =− iη∗1∂0η1 − iη∗2∂0η2 − iξ2∂0ξ
∗
2 − iξ1∂0ξ

∗
1

+ iη∗1∂1η2 + iη∗2∂1η1 − iξ2∂1ξ
∗
1 − iξ1∂1ξ

∗
2 (A.30)

+ η∗1∂2η2 − η∗2∂2η1 − ξ2∂2ξ
∗
1 + ξ1∂2ξ

∗
2

+ iη∗1∂3η1 − iη∗2∂3η2 + iξ2∂3ξ
∗
2 − iξ1∂3ξ

∗
1 .

Separating the real and the imaginary part of Eq. (A.29) we get
2

i
w3 = ξ1∂0ξ

∗
1 + ξ2∂0ξ

∗
2 + η1∂0η

∗
1 + η2∂0η

∗
2 − ξ∗1∂0ξ1 − ξ∗2∂0ξ2 − η∗1∂0η1

− η∗2∂0η2 + ξ1∂1ξ
∗
2 + ξ2∂1ξ

∗
1 − η1∂1η

∗
2 − η2∂1η

∗
1 − ξ∗1∂1ξ2 − ξ∗2∂1ξ1

+ η∗1∂1η2 + η∗2∂1η1 − i(−ξ1∂2ξ∗2 + ξ2∂2ξ
∗
1 + η1∂2η

∗
2 − η2∂2η

∗
1

− ξ∗1∂2ξ2 + ξ∗2∂2ξ1 + η∗1∂2η2 − η∗2∂2η1) + ξ1∂3ξ
∗
1 − ξ2∂3ξ

∗
2

− η1∂3η
∗
1 + η2∂3η

∗
2 − ξ∗1∂3ξ1 + ξ∗2∂3ξ2 + η∗1∂3η1 − η∗2∂3η2.

(A.31)

This gives with Eq. (A.22)
1

2
[(ψγμ(−i)∂μψ) + (ψγμ(−i)∂μψ)†] = w3, (A.32)

and with Eq. (A.20) we get Eq. (2.83). The Tetrode’s impulse–energy tensor
coming from the invariance of the Lagrangian density under translations
satisfies

T μ
λ =

1

2
[(ψγμ(−i∂λ + qAλ)ψ + ((ψγμ(−i∂λ + qAλ)ψ)

†]. (A.33)

We get then from Eq. (A.32)

w3 = T μ
μ − qψγμAμψ

w3 = T μ
μ − V 0

w3 + V 0 = tr(T ). (A.34)
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Now the imaginary part of Eq. (A.29) gives
−2υ3 = ∂0(ξ1ξ

∗
1 + ξ2ξ

∗
2 − η1η

∗
1 − η2η

∗
2) (A.35)

+ ∂1(ξ1ξ
∗
2 + ξ2ξ

∗
1 + η1η

∗
2 + η2η

∗
1)

+ ∂2i(ξ1ξ
∗
2 − ξ2ξ

∗
1 + η1η

∗
2 − η2η

∗
1)

+ ∂3(ξ1ξ
∗
1 − ξ2ξ

∗
2 + η1η

∗
1 − η2η

∗
2)

= ∂μD
μ
3 = ∇ ·D3. (A.36)

The imaginary part of Eq. (A.30) gives
−2υ0 = ∂0(ξ1ξ

∗
1 + ξ2ξ

∗
2 + η1η

∗
1 + η2η

∗
2) (A.37)

+ ∂1(ξ1ξ
∗
2 + ξ2ξ

∗
1 − η1η

∗
2 − η2η

∗
1)

+ ∂2i(ξ1ξ
∗
2 − ξ2ξ

∗
1 − η1η

∗
2 + η2η

∗
1)

+ ∂3(ξ1ξ
∗
1 − ξ2ξ

∗
2 − η1η

∗
1 + η2η

∗
2)

= ∂μD
μ
0 = ∇ ·D0, (A.38)

and we get the conservation of the current of probability. From Eq. (A.18)
we get

qAνD
ν
μσ

μ = φqAφ̂ = V = V μσμ,

= V 0 − V 1σ1 − V 2σ2 − V 3σ3 (A.39)

V j = −qAνD
ν
j = −qA ·Dj ; j = 1, 2, 3. (A.40)

The real part of Eq. (A.30) gives with Eq. (2.78)
2

i
w0 = 2iV 3 =

2

i
qA ·D3 = (A.41)

− ξ1∂0ξ
∗
1−ξ2∂0ξ∗2+η1∂0η∗1+η2∂0η∗2+ξ∗1∂0ξ1+ξ∗2∂0ξ2−η∗1∂0η1−η∗2∂0η2

− ξ1∂1ξ
∗
2−ξ2∂1ξ∗1−η1∂1η∗2−η2∂1η∗1+ξ∗1∂1ξ2+ξ∗2∂1ξ1+η∗1∂1η2+η∗2∂1η1

− i(ξ1∂2ξ
∗
2−ξ2∂2ξ∗1+η1∂2η∗2−η2∂2η∗1+ξ∗1∂2ξ2−ξ∗2∂2ξ1+η∗1∂2η2−η∗2∂2η1)

− ξ1∂3ξ
∗
1+ξ2∂3ξ

∗
2−η1∂3η∗1+η2∂3η∗2+ξ∗1∂3ξ1−ξ∗2∂3ξ2+η∗1∂3η1−η∗2∂3η2

Now adding and subtracting Eq. (A.27) and Eq. (A.28) we get
v2 + iw2 = iξ2∂0η1 − iξ1∂0η2 − iη∗1∂0ξ

∗
2 + iη∗2∂0ξ

∗
1

− iξ2∂1η2 + iξ1∂1η1 − iη∗1∂1ξ
∗
1 + iη∗2∂1ξ

∗
2 (A.42)

− ξ2∂2η2 − ξ1∂2η1 − η∗1∂2ξ
∗
1 − η∗2∂2ξ

∗
2

− iξ2∂3η1 − iξ1∂3η2 + iη∗1∂3ξ
∗
2 + iη∗2∂3ξ

∗
1 ,

w1 − iv1 = iξ2∂0η1 − iξ1∂0η2 + iη∗1∂0ξ
∗
2 − iη∗2∂0ξ

∗
1

− iξ2∂1η2 + iξ1∂1η1 + iη∗1∂1ξ
∗
1 − iη∗2∂1ξ

∗
2 (A.43)

− ξ2∂2η2 − ξ1∂2η1 + η∗1∂2ξ
∗
1 + η∗2∂2ξ

∗
2

− iξ2∂3η1 − iξ1∂3η2 − iη∗1∂3ξ
∗
2 − iη∗2∂3ξ

∗
1 .
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The real part of Eq. (A.42) gives
2v2 = ∂0i(−ξ1η2 + ξ2η1 + ξ∗1η

∗
2 − ξ∗2η

∗
1) (A.44)

+ ∂1i(ξ1η1 − ξ2η2 − ξ∗1η
∗
1 + ξ∗2η

∗
2)

+ ∂2(−ξ1η1 − ξ2η2 − ξ∗1η
∗
1 − ξ∗2η

∗
2)

+ ∂3i(−ξ1η2 − ξ2η1 + ξ∗1η
∗
2 + ξ∗2η

∗
1)

= − ∂μD
μ
2 = −∇ ·D2 (A.45)

which gives, with Eq. (2.76)
∇ ·D2 = −2v2 = 2V 1, (A.46)

and we get with Eq. (A.40)
∇ ·D2 + 2qA ·D1 = 0, (A.47)

which is 2.87. The imaginary part of Eq. (A.42) gives with Eq. (2.80)
2w2 = 0 =−ξ1∂0η2+ξ2∂0η1−η1∂0ξ2−η2∂0ξ1−ξ∗1∂0η∗2+ξ∗2∂0η∗1−η∗1∂0ξ∗2

+ η∗2∂0ξ
∗
1+ξ1∂1η1−ξ2∂1η2−η1∂1ξ1+η2∂1ξ2+ξ∗1∂1η∗1−ξ∗2∂1η∗2

−η∗1∂1ξ∗1+η∗2∂1ξ∗2+i(ξ1∂2η1+ξ2∂2η2−η1∂2ξ1−η2∂2ξ2−ξ∗1∂2η∗1
−ξ∗2∂2η∗2+η∗1∂2ξ∗1+η∗2∂2ξ∗2)−ξ1∂3η2−ξ2∂3η1+η1∂3ξ2
−η2∂3ξ1 − ξ∗1∂3η

∗
2 − ξ∗2∂3η

∗
1 + η∗1∂3ξ

∗
2 + η∗2∂3ξ

∗
1 . (A.48)

The real part of Eq. (A.43) gives with Eq. (2.81)
2w1 = 0 =i(−ξ1∂0η2+ξ2∂0η1−η1∂0ξ2+η2∂0ξ1+ξ∗1∂0η∗2−ξ∗2∂0η∗1+η∗1∂0ξ∗2

− η∗2∂0ξ
∗
1)+i(ξ1∂1η1−ξ2∂1η2−η1∂1ξ1+η2∂1ξ2−ξ∗1∂1η∗1+ξ∗2∂1η∗2

+η∗1∂1ξ
∗
1 − η∗2∂1ξ

∗
2)−ξ1∂2η1−ξ2∂2η2+η1∂2ξ1+η2∂2ξ2−ξ∗1∂2η∗1

−ξ∗2∂2η∗2+η∗1∂2ξ∗1+η∗2∂2ξ∗2+i(−ξ1∂3η2−ξ2∂3η1+η1∂3ξ2+η2∂3ξ1
+ξ∗1∂3η

∗
2+ξ

∗
2∂3η

∗
1−η∗1∂3ξ∗2−η∗2∂3ξ∗1), (A.49)

The imaginary part of Eq. (A.43) gives
−2v1 = ∂0(−ξ1η2 + ξ2η1 − ξ∗1η

∗
2 + ξ∗2η

∗
1) (A.50)

+ ∂1(ξ1η1 − ξ2η2 + ξ∗1η
∗
1 − ξ∗2η

∗
2)

+ ∂2i(ξ1η1 + ξ2η2 − ξ∗1η
∗
1 − ξ∗2η

∗
2)

+ ∂3(−ξ1η2 − ξ2η1 − ξ∗1η
∗
2 − ξ∗2η

∗
1)

= ∂μD
μ
1 = ∇ ·D1, (A.51)

which gives, with Eq. (2.77)
∇ ·D1 = −2v1 = −2V 2, (A.52)

and we get with Eq. (A.40)
∇ ·D1 − 2qA ·D2 = 0, (A.53)

which is Eq. (2.86).
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A.2 Calculation of the reverse in Cl1,5

Here, as in Sec. 1.5, indices μ, ν, ρ . . . have value 0, 1, 2, 3 and indices
a, b, c, d, e have value 0, 1, 2, 3, 4, 5. We get 2

Lμν = LμLν =

(
0 γμ
γμ 0

)(
0 γν
γν 0

)
=

(
γμν 0

0 γμν

)
, (A.54)

Lμνρ = LμνLρ =

(
γμν 0

0 γμν

)(
0 γρ
γρ 0

)
=

(
0 γμνρ

γμνρ 0

)
, (A.55)

L0123 = L01L23 =

(
γ0123 0

0 γ0123

)
=

(
i 0

0 i

)
. (A.56)

We get also

L45 = L4L5 =

(
0 −I4
I4 0

)(
0 i

i 0

)
=

(−i 0

0 i

)
= −L54, (A.57)

L012345 =

(
i 0

0 i

)(−i 0

0 i

)
=

(
I4 0

0 −I4

)
, (A.58)

L01235 = L0123L5 =

(
i 0

0 i

)(
0 i

i 0

)
=

(
0 −I4

−I4 0

)
. (A.59)

Similarly we get 3

Lμ4 =

(
γμ 0

0 −γμ

)
; Lμ5 =

(
γμi 0

0 γμi

)
, (A.60)

Lμν4 =

(
0 −γμν
γμν 0

)
; Lμν5 =

(
0 γμν i

γμνi 0

)
, (A.61)

Lμνρ4 =

(
γμνρ 0

0 −γμνρ

)
; Lμνρ5 =

(
γμνρi 0

0 γμνρi

)
, (A.62)

Lμ45 =

(
0 γμi

−γμi 0

)
; Lμν45 =

(−γμνi 0

0 γμν i

)
, (A.63)

Lμνρ45 =

(
0 γμνρi

−γμνρi 0

)
; L01234 =

(
0 −i

i 0

)
. (A.64)

Scalar and pseudo-scalar terms read

αI8 + ωL012345 =

(
(α+ ω)I4 0

0 (α− ω)I4

)
, (A.65)

αI8 − ωL012345 =

(
(α− ω)I4 0

0 (α+ ω)I4

)
. (A.66)

2. I2, I4, I8 are unit matrices. The identification process allowing us to include R in
each real Clifford algebra allows us to read a instead of aIn for any complex number a.

3. i anti-commutes with any odd element in space-time algebra and commutes with
any even element.

16 septembre 2015 12:31 The Standard model of Quantum Physics-9780 livre_CD_JB page v



168 The standard model of quantum physics in Clifford Algebra

For the calculation of the 1-vector term

NaLa = N4L4 +N5L5 +NμLμ

we let

β = N4 ; δ = N5 ; a = Nμγμ. (A.67)

This gives

NaLa =

(
0 −βI4 + δi+ a

βI4 + δi+ a 0

)
. (A.68)

For the calculation of the 2-vector term

NabLab = N45L45 +Nμ4Lμ4 +Nμ5Lμ5 +NμνLμν ,

we let

ε = N45 ; b = Nμ4γμ ; c = Nμ5γμ ; A = Nμνγμν . (A.69)

This gives with Eq. (A.54) and Eq. (A.60)

NabLab =

(−εi+ b− ic+A 0

0 εi− b− ic+A

)
. (A.70)

For the calculation of the 3-vector term

NabcLabc = Nμ45Lμ45 +Nμν4Lμν4 +Nμν5Lμν5 +NμνρLμνρ,

we let

d = Nμ45γμ ; B = Nμν4γμν ; C = Nμν5γμν ; ie = Nμνργμνρ. (A.71)

This gives with Eq. (A.55) and Eq. (A.61)

NabcLabc =

(
0 di−B+ iC+ ie

id+B+ iC+ ie 0

)
. (A.72)

For the calculation of the 4-vector term

NabcdLabcd = Nμν45Lμν45 +Nμνρ4Lμνρ4 +Nμνρ5Lμνρ5 +N0123L0123,

we let

D = Nμν45γμν ; if = Nμνρ4γμνρ ; ig = Nμνρ5γμνρ ; ζ = N0123. (A.73)

This gives with Eq. (A.56) and Eq. (A.62)

NabcdLabcd =

(−iD+ if + g+ ζi 0

0 iD− if + g+ ζi

)
. (A.74)

For the calculation of the pseudo-vector term

NabcdeLabcde = Nμνρ45Lμνρ45 +N01234L01234 +N01235L01235,
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we let

ih = Nμνρ45γμνρ ; η = N01234 ; θ = N01235. (A.75)

This gives with Eq. (A.59) and Eq. (A.64)

NabcdeLabcde =

(
0 h− ηi− θI4

−h+ ηi− θI4

)
. (A.76)

We then get

Ψ =

(
Ψl Ψr

Ψg Ψb

)
(A.77)

=

⎛⎜⎜⎜⎜⎝
(α + ω)I4 + (b+ g) + (A− iD) −(β + θ)I4 + (a+ h) + (−B+ iC)

+i(−c+ f) + (ζ − ε)i +i(−d+ e) + (δ − η)i

(β − θ)I4 + (a− h) + (B+ iC) (α− ω)I4 + (−b+ g) + (A+ iD)

+i(d+ e) + (δ + η)i +i(−c− f) + (ζ + ε)i

⎞⎟⎟⎟⎟⎠ .
This implies

Ψl = (α+ ω) + (b+ g) + (A− iD) + i(−c+ f) + (ζ − ε)i, (A.78)

Ψr = −(β + θ) + (a+ h) + (−B+ iC) + i(−d+ e) + (δ − η)i, (A.79)

Ψg = (β − θ) + (a− h) + (B+ iC) + i(d+ e) + (δ + η)i, (A.80)

Ψb = (α− ω) + (−b+ g) + (A+ iD) + i(−c− f) + (ζ + ε)i. (A.81)

In Cl1,3 the reverse of

A = 〈A〉0 + 〈A〉1 + 〈A〉2 + 〈A〉3 + 〈A〉4
is

Ã = 〈A〉0 + 〈A〉1 − 〈A〉2 − 〈A〉3 + 〈A〉4
. We must change the sign of bivectors A, B, iC, iD, and trivectors ic, id,
ie, if and we then get

Ψ̃l = (α− ω)I4 + (−b+ g) + (A+ iD)− i(c+ f) + (ζ + ε)i, (A.82)

Ψ̃r = (β + θ)I4 − (a+ h) + (B− iC) + i(d− e) + (−δ + η)i, (A.83)

Ψ̃g = (β − θ)I4 + (a− h) + (B+ iC) + i(d+ e) + (δ + η)i, (A.84)

Ψ̃b = (α+ ω)I4 + (b+ g) + (A− iD) + i(−c+ f) + (ζ − ε)i. (A.85)

The reverse, in Cl1,5 now, of

A = A0 +A1 +A2 +A3 +A4 +A5 +A6
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is

Ã = A0 +A1 −A2 −A3 +A4 +A5 −A6

Only terms which change 4 sign, with Eq. (A.65), Eq. (A.70) and Eq. (A.72),
are scalars ε and ω, vectors b, c, d, e and bivectors A, B, C. We then get
from Eq. (A.78)

Ψ̃=

⎛⎜⎜⎜⎜⎝
(α−ω)I4+(−b+ g) + (−A− iD) −(β + θ)I4 + (a+ h)+(B− iC)

+i(c+ f) + (ζ + ε)i +i(d− e) + (δ − η)i

(β − θ)I4+(a− h)−(B+ iC) (α+ ω)I4+(b+ g)+(−A+ iD)

−i(d+ e) + (δ + η)i +i(c− f) + (ζ − ε)i

⎞⎟⎟⎟⎟⎠
=

(
Ψ̃b Ψ̃r

Ψ̃g Ψ̃l

)
. (A.86)

And we have proved Eq. (7.73).

4. These changes of sign are not the same in Cl1,5 as in Cl1,3. Differences are cor-
rected by the fact that the reversion in Cl1,5 also exchanges the place of the Ψl and Ψb

terms.
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Electron+neutrino+quarks

B.1 Gauge generated by i

The operators P0 in Eq. (6.13) and Eq. (8.25) and P ′
0 in Eq. (7.13) have

the form Eq. (8.25). They satisfy, with constant numbers a and b:

P0(Ψ) = aΨγ21 + bP−(Ψ)i.

Applied to

Ψ =

(
φe φn
φ̂n φ̂e

)
=

√
2

⎛⎜⎜⎝
ξ1e −η∗2e 0 −η∗2n
ξ2e η∗1e 0 η∗1n
η1n 0 η1e −ξ∗2e
η2n 0 η2e ξ∗1e

⎞⎟⎟⎠ , (B.1)

this gives

P0(Ψ) = ia

(
φeσ3 φnσ3
φ̂nσ3 φ̂eσ3

)
+ ib

(
φeR 0

0 −φ̂eR

)
, (B.2)

P0(Ψ) = i
√
2

⎛⎜⎜⎝
(a+ b)ξ1e (−a)(−η∗2e) 0 (−a)(−η∗2n)
(a+ b)ξ2e (−a)η∗1e 0 (−a)η∗1n
aη1n 0 aη1e −(a+ b)(−ξ∗2e)
aη2n 0 aη2e −(a+ b)ξ∗1e

⎞⎟⎟⎠ , (B.3)

P0(Ψ) =
bi

2
Ψ +Ψ(a+

b

2
)γ21. (B.4)

Since by exp(a0P0)

ξe �→ eia
0(a+b)ξe; ηe �→ eia

0aηe; ηn �→ eia
0aηn, (B.5)

we get

[exp(a0P0)](Ψ) = ea
0 b

2 iΨea
0(a+ b

2 )γ21 . (B.6)

171
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We then get

∂μ

[
[exp(a0P0)](Ψ)

]
= ∂μa

0 b

2
iea

0 b
2 iΨea

0(a+ b
2 )γ21 + ea

0 b
2 i∂μΨe

a0(a+ b
2 )γ21

+ ea
0 b

2 iΨ∂μa
0(a+

b

2
)γ21e

a0(a+ b
2 )γ21

= ∂μa
0ea

0 b
2 i[
bi

2
Ψ +Ψ(a+

b

2
)γ21]e

a0(a+ b
2 )γ21 + ea

0 b
2 i∂μΨe

a0(a+ b
2 )γ21

= ∂μa
0ea

0 b
2 iP0(Ψ)ea

0(a+ b
2 )γ21 + ea

0 b
2 i∂μΨe

a0(a+ b
2 )γ21

= ea
0 b

2 i[∂μa
0P0(Ψ) + ∂μΨ]ea

0(a+ b
2 )γ21 . (B.7)

The gauge transformation defined as

B′
μ = Bμ − 2

g1
∂μa

0, (B.8)

Ψ′ = [exp(a0P0)](Ψ) = ea
0 b

2 iΨea
0(a+ b

2 )γ21 , (B.9)

gives:

DμΨ = ∂μΨ+
g1
2
BμP0(Ψ), (B.10)

D′
μΨ

′ = ∂μΨ
′ + (

g1
2
Bμ − ∂μa

0)P0(Ψ
′) (B.11)

= ∂μ

[
[exp(a0P0)](Ψ)

]
+ (

g1
2
Bμ − ∂μa

0)[
b

2
iΨ′ +Ψ′(a+

b

2
)γ21] (B.12)

= ea
0 b

2 i[∂μa
0P0(Ψ) + ∂μΨ+ (

g1
2
Bμ − ∂μa

0)P0(Ψ)]ea
0(a+ b

2 )γ21

= ea
0 b

2 i(DμΨ)ea
0(a+ b

2 )γ21 . (B.13)

We deduce:

D′Ψ′ = γμD′
μΨ

′ = γμea
0 b

2 i(DμΨ)ea
0(a+ b

2 )γ21

= e−a0 b
2 i(DΨ)ea

0(a+ b
2 )γ21 , (B.14)

because i anti-commutes with each γμ. Next we have

Ψ̃′ = ea
0(a+ b

2 )γ̃21Ψ̃ea
0 b

2
˜i

= e−a0(a+ b
2 )γ21Ψ̃ea

0 b
2 i, (B.15)

Ψ̃′D′Ψ′ = e−a0(a+ b
2 )γ21Ψ̃ea

0 b
2 ie−a0 b

2 i(DΨ)ea
0(a+ b

2 )γ21

= e−a0(a+ b
2 )γ21Ψ̃(DΨ)ea

0(a+ b
2 )γ21 . (B.16)
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In the magnetic monopole case the lepton wave reads:

Ψ =

(
φL φn
φ̂n φ̂L

)
=

√
2

⎛⎜⎜⎝
0 −η∗2L ξ1n −η∗2n
0 η∗1L ξ2n η∗1n
η1n −ξ∗2n η1L 0

η2n ξ∗1n η2L 0

⎞⎟⎟⎠ , (B.17)

which gives

P0(Ψ) = aΨγ21 + bP−(Ψ)i

= i
√
2

⎛⎜⎜⎝
0 −a(−η∗2L) (a− b)ξ1n −a(−η∗2n)
0 −aη∗1L (a− b)ξ2n −aη∗1n

aη1n (−a+ b)(−ξ∗2n) aη1L 0

aη2n (−a+ b)ξ∗1n aη2L 0

⎞⎟⎟⎠ (B.18)

= − b

2
iΨ+Ψ(a− b

2
)γ21. (B.19)

The following calculation is then the same, but with the change of b into
−b.

B.2 Tensorial densities for electron+neutrino

In the case of the electron+neutrino pair, like in the case of the magnetic
monopole, each spinor has four real parameters, which gives 4 × 5/2 = 10

components of tensors: one space-time vector (4 components) and a space-
time bivector (6 components). With the right φR spinor of the electron
(or 5 of the magnetic monopole)

φR =
√
2

(
ξ1 0

ξ2 0

)
, (B.20)

we get the space-time vector DR and 6 satisfying

DR = φRφ
†
R ; SR = φRσ1φR. (B.21)

the bivector SRDR is a space-time vector, because it satisfies D†
R = DR.

Similarly, with the left spinor φL

φL =
√
2

(
0 −η∗2
0 η∗1

)
; φe = φR + φL, (B.22)

5. Since we can study both the case of the electron and the case of the magnetic
monopole, we shall note without e index the components of the electron wave and we
shall note here ζj what was noticed ηjn in the case of the left wave of the electronic
neutrino, and ηjL in the case of the supplementary left wave of the magnetic monopole.

6. A detailed calculation of components is in B of [21].
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we get the vector DL and the bivector SL satisfying

DL = φLφ
†
L ; SL = φLσ1φL. (B.23)

Here and for the Lochak’s magnetic monopole [46] the DR, DL currents are
the fundamental ones of the Dirac theory. The usual J = D0 and K = D3

currents are simply sum and difference of these chiral currents:

D0 = DR +DL ; D3 = DR −DL. (B.24)

With the φn = φnL spinor of the electronic neutrino, that is here

φn =
√
2

(
0 −ζ∗2
0 ζ∗1

)
, (B.25)

we get the space-time vector Dn and the bivector Sn such as

Dn = φnφ
†
n ; Sn = φnσ1φn. (B.26)

Next with two of the three spinors we can get 16 densities. We begin
with φR and φL. We let

P = 2φRφL = a+ SRL,

P = 2φLφR = a− SRL, (B.27)

I = DRL + idRL = 2φRσ1φ
†
L,

I† = DRL − idRL = 2φLσ1φ
†
R. (B.28)

a and SRL are well known in the Dirac theory:

a = det(φe) = Ω1 + iΩ2 = 2(ξ1η
∗
1 + ξ2η

∗
2), (B.29)

where Ω1, Ω2 are the relativistic invariants of Eq. (2.33) and Eq. (2.34).
The S3 = SRL bivector is the one in Eq. (2.44) which with Ω1, Ω2, D0 and
D3, gives the 16 densities that were considered as the only possible densities
without derivatives from the complex formalism. These densities are the
invariant ones under the electric gauge. DRL = D1 and dRL = D2 are the
space-time vectors defined in Eq. (2.37). Under the R dilation defined in
Eq. (1.42) a is changed into a′ such as

a′ =MφeφeM =MaM = aMM = reiθa. (B.30)

Therefore

a′a′∗ = reiθare−iθa∗ = r2aa∗. (B.31)
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Next with φL and φn we let

P = 2φ̂nσ1φ
†
L = b+ SLn,

P = 2φ̂Lσ1φ
†
n = b− SLn, (B.32)

I = DLn + idLn = 2φnφ
†
L,

I† = DLn − idLn = 2φLφ
†
n. (B.33)

DLn and dLn are contravariant space-time vectors, while SLn is a bivector.
We shall need

b = φ̂nσ1φ
†
L + φ̂Lσ1φ

†
n = 2(η1ζ2 − η2ζ1), (B.34)

b′ = M̂bM † = M̂M †b = re−iθb,

b′b′∗ = r2bb∗. (B.35)

Finally with φR and φn we let

P = 2φRφn = c+ SRn

P = 2φnφR = c− SRn (B.36)

I = DRn + idRn = 2φRσ1φ
†
n

I† = DRn − idRn = 2φnσ1φ
†
R (B.37)

DRn and dRn are also contravariant vectors, while SRn is a bivector. We
shall use

c = φRφn + φnφR = 2(ξ1ζ
∗
1 + ξ2ζ

∗
2 ), (B.38)

c′ =McM =MMc = reiθc ; c′c′∗ = r2cc∗. (B.39)

We have established in Eq. (3.42) that the main invariant of the wave of
the electron is mρ. Since we now have not only one but three similar terms,
the natural generalization that is necessary and also sufficient to get the
gauge invariance is:

ρρρ =
√
aa∗ + bb∗ + cc∗, (B.40)

mρρρ = m′rρρρ = m′ρρρ′. (B.41)

B.3 Getting the wave equation

Since this term is the generalization of the invariant term of the wave
of the electron, which is also the mass term of the Lagrangian density,
this density is, in the case of the electron+neutrino pair, the scalar part
L = 〈L〉0 of

L = Ψ̃DΨγ012 +mρρρ, (B.42)
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where D is the covariant derivative Eq. (6.22). We shall use for the pair
electron+neutrino:

ΨL = P+(Ψ) =

(
φL φn
φ̂n φ̂L

)
, (B.43)

ΨR = P−(Ψ) =

(
φR 0

0 φ̂R

)
,

Ψ = ΨR +ΨL, (B.44)

P0(Ψ) = (ΨL + 2ΨR)γ21, (B.45)

and we have

P0(Ψ) = (ΨR +ΨL)γ21 +ΨRγ21 = (ΨL + 2ΨR)γ21, (B.46)

ΨL + 2ΨR =

(
φL + 2φR φn

φ̂n φ̂L + 2φ̂R

)
. (B.47)

We have also

DΨ = ∂∂∂Ψ +
g1
2
BP0(Ψ) +

g2
2
WjPj(Ψ) (B.48)

= ∂∂∂Ψ +
g1
2
B(ΨL + 2ΨR)γ21 +

g2
2
[W1ΨLγ3i+W2ΨLγ3 +W3ΨL(−i)].

This gives

DΨγ012 = ∂∂∂Ψγ012 +
g1
2
B(ΨL + 2ΨR)γ0 (B.49)

− g2
2
[W1ΨL +W2ΨLi+W3ΨLγ3].

Next we have

∂∂∂Ψγ012 =

(
0 ∇
∇̂ 0

)(
φe φn
φ̂n φ̂e

)(
0 −iσ3

−iσ3 0

)
, (B.50)

=

(
−i∇(φ̂R + φ̂L)σ3 −i∇φ̂nσ3

−i∇̂φnσ3 −i∇̂(φR + φL)σ3

)
,

∂∂∂Ψγ012 = −i
(
∇(−φ̂R + φ̂L) ∇φ̂n

−∇̂φn ∇̂(φR − φL)

)
. (B.51)

And we get for B

B(ΨL + 2ΨR)γ0 =

(
0 B

B̂ 0

)(
φL + 2φR φn

φ̂n φ̂L + 2φ̂R

)(
0 I

I 0

)

=

(
0 B

B̂ 0

)(
φn φe + φR

φ̂e + φ̂R φ̂n

)
, (B.52)
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BP0(Ψ)γ012 =

(
B(φ̂e + φ̂R) Bφ̂n

B̂φn B̂(φe + φR)

)
. (B.53)

Similarly we have

W1ΨL =

(
0 W 1

Ŵ 1 0

)(
φL φn
φ̂n φ̂L

)
=

(
W 1φ̂n W

1φ̂L

Ŵ 1φL Ŵ 1φn

)
, (B.54)

W2ΨLi =

(
0 W 2

Ŵ 2 0

)(
φL φn
φ̂n φ̂L

)(
i 0

0 −i
)

=

(
iW 2φ̂n −iW 2φ̂L

iŴ 2φL −iŴ 2φn

)
,

(B.55)

W3ΨLγ3 =

(
0 W 3

Ŵ 3 0

)(
φL φn
φ̂n φ̂L

)(
0 σ3

−σ3 0

)

=

(
−W 3φ̂Lσ3 W

3φ̂nσ3

−Ŵ 3φnσ3 Ŵ
3φLσ3

)
=

(
−W 3φ̂L W 3φ̂n

Ŵ 3φn −Ŵ 3φL

)
. (B.56)

We then get
W1ΨL +W2ΨLi+W3ΨLγ3

=

(
(W 1 + iW 2)φ̂n −W 3φ̂L (W 1 − iW 2)φ̂L +W 3φ̂n

(Ŵ 1 + iŴ 2)φL + Ŵ 3φn (Ŵ 1 − iŴ 2)φn − Ŵ 3φL

)
. (B.57)

Next we get
Ψ̃DΨγ012 = Ψ̃∂∂∂Ψγ012 +

g1
2
Ψ̃B(ΨL + 2ΨR)γ0

− g2
2
Ψ̃[W1ΨL +W2ΨLi+W3ΨLγ3], (B.58)

Ψ̃∂∂∂Ψγ012 = −i
(
φe φ

†
n

φn φ†e

)(∇(−φ̂R + φ̂L) ∇φ̂n
−∇̂φn ∇̂(φR − φL)

)
(B.59)

= −i
(
φe∇(−φ̂R + φ̂L)− φ†n∇̂φn φe∇φ̂n + φ†n∇̂(φR − φL)

φn∇(−φ̂R + φ̂L)− φ†e∇̂φn φn∇φ̂n + φ†e∇̂(φR − φL)

)
.

With the matrix representation Eq. (1.75) the real part of any multivector
of space-time is the real part of the scalar part of the matrix. We then get

�(Ψ̃∂∂∂Ψγ012) = �[iφe∇(φ̂R − φ̂L) + iφ†n∇̂φn]. (B.60)
Next we get

Ψ̃BP0(Ψ)γ012 =

(
φe φ

†
n

φn φ†e

)(
B(φ̂R + φ̂e) Bφ̂n

B̂φn B̂(φR + φe)

)
(B.61)

=

(
φeB(φ̂R + φ̂e) + φ†nB̂φn φeBφ̂n + φ†nB̂(φR + φe)

φnB(φ̂R + φ̂e) + φ†eB̂φn φnBφ̂n + φ†eB̂(φR + φe)

)
,

�[Ψ̃BP0(Ψ)γ012] = �[φeB(φ̂R + φ̂e) + φ†nB̂φn]. (B.62)
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And we get

Ψ̃[W1ΨL +W2ΨLi+W3ΨLγ3] (B.63)

=

(
φe φ

†
n

φn φ†e

)(
(W 1 + iW 2)φ̂n−W 3φ̂L (W 1 − iW 2)φ̂L+W

3φ̂n

(Ŵ 1 + iŴ 2)φL+Ŵ
3φn (Ŵ 1 − iŴ 2)φn−Ŵ 3φL

)
=

(
U V

V̂ Û

)
,

U = φe[(W
1 + iW 2)φ̂n −W 3φ̂L] + φ†n[(Ŵ

1 + iŴ 2)φL + Ŵ 3φn]. (B.64)

This gives

�[Ψ̃[W1ΨL +W2ΨLi+W3ΨLγ3]
]
= �(φeW

1φ̂n + φ†nŴ
1φL) (B.65)

+ �(iφeW 2φ̂n + iφ†nŴ
2φL)

+ �(−φeW 3φ̂L + φ†nŴ
3φn).

Next we have

2�[iφe∇(φ̂R − φ̂L) + iφ†n∇̂φn]
=− iη∗1∂0η1 + iη1∂0η

∗
1 − iη∗2∂0η2 + iη2∂0η

∗
2 + iξ2∂0ξ

∗
2 − iξ∗2∂0ξ2

+ iξ1∂0ξ
∗
1 − iξ∗1∂0ξ1 + iζ2∂0ζ

∗
2 − iζ∗2∂0ζ2 + iζ1∂0ζ

∗
1 − iζ∗1∂0ζ1

+ iη∗1∂1η2 − iη1∂1η
∗
2 + iη∗2∂1η1 − iη2∂1η

∗
1 + iξ2∂1ξ

∗
1 − iξ∗2∂1ξ1

+ iξ1∂1ξ
∗
2 − iξ∗1∂1ξ2 − iζ2∂1ζ

∗
1 + iζ∗2∂1ζ1 − iζ1∂1ζ

∗
2 + iζ∗1∂1ζ2

+ η∗1∂2η2 + η1∂2η
∗
2 − η∗2∂2η1 − η2∂2η

∗
1 + ξ2∂2ξ

∗
1 + ξ∗2∂2ξ1

− ξ1∂2ξ
∗
2 − ξ∗1∂2ξ2 − ζ2∂2ζ

∗
1 − ζ∗2∂2ζ1 + ζ1∂2ζ

∗
2 + ζ∗1∂2ζ2

+ iη∗1∂3η1 − iη1∂3η
∗
1 − iη∗2∂3η2 + iη2∂3η

∗
2 − iξ2∂3ξ

∗
2 + iξ∗2∂3ξ2

+ iξ1∂3ξ
∗
1 − iξ∗1∂3ξ1 + iζ2∂3ζ

∗
2 − iζ∗2∂3ζ2 − iζ1∂3ζ

∗
1 + iζ∗1∂3ζ1. (B.66)

From Eq. (B.62) we have

� [φeB(φ̂R + φ̂e) + φ†nB̂φn]

= B0(η1η
∗
1 + η2η

∗
2 + 2ξ1ξ

∗
1 + 2ξ2ξ

∗
2 + ζ1ζ

∗
1 + ζ2ζ

∗
2 )

+B1(−η1η∗2 − η2η
∗
1 + 2ξ1ξ

∗
2 + 2ξ2ξ

∗
1 − ζ1ζ

∗
2 − ζ2ζ

∗
1 )

+B2i(−η1η∗2 + η2η
∗
1 + 2ξ1ξ

∗
2 − 2ξ2ξ

∗
1 − ζ1ζ

∗
2 + ζ2ζ

∗
1 )

+B3(−η1η∗1 + η2η
∗
2 + 2ξ1ξ

∗
1 − 2ξ2ξ

∗
2 − ζ1ζ

∗
1 + ζ2ζ

∗
2 ) (B.67)

and from Eq. (B.64) we have

�(φeW
1φ̂n + φ†nŴ

1φL) = W 1
0 (η1ζ

∗
1 + η2ζ

∗
2 + ζ1η

∗
1 + ζ2η

∗
2)

+W 1
1 (−η1ζ∗2 − η2ζ

∗
1 − ζ1η

∗
2 − ζ2η

∗
1)

+W 1
2 i(−η1ζ∗2 + η2ζ

∗
1 − ζ1η

∗
2 + ζ2η

∗
1)

+W 1
3 (−η1ζ∗1 + η2ζ

∗
2 − ζ1η

∗
1 + ζ2η

∗
2), (B.68)
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�(iφeW
2φ̂n + iφ†nŴ

2φL) = W 2
0 i(−η1ζ∗1 − η2ζ

∗
2 + ζ1η

∗
1 + ζ2η

∗
2)

+W 2
1 i(η1ζ

∗
2 + η2ζ

∗
1 − ζ1η

∗
2 − ζ2η

∗
1)

+W 2
2 (−η1ζ∗2 + η2ζ

∗
1 + ζ1η

∗
2 − ζ2η

∗
1)

+W 2
3 i(−η1ζ∗1 + η2ζ

∗
2 − ζ1η

∗
1 + ζ2η

∗
2),

(B.69)

�(−φeW
3φ̂L + φ†nŴ

3φn) = W 3
0 (−η1η∗1 − η2η

∗
2 + ζ1ζ

∗
1 + ζ2ζ

∗
2 )

+W 3
1 (+η1η

∗
2 + η2η

∗
1 − ζ1ζ

∗
2 − ζ2ζ

∗
1 )

+W 3
2 i(+η1η

∗
2 − η2η

∗
1 − ζ1ζ

∗
2 + ζ2ζ

∗
1 )

+W 3
3 (η1η

∗
1 − η2η

∗
2 − ζ1ζ

∗
1 + ζ2ζ

∗
2 ). (B.70)

Therefore the Lagrangian density is

Ll = L0 + g1L1 + g2L2 +mρρρ, (B.71)

L0 = �[−i(η†eσμ∂μηe + ξ†e σ̂
μ∂μξe + η†nσ

μ∂μηn)], (B.72)

L1 = Bμ(
1

2
η†eσ

μηe + ξ†eσ̂
μξe +

1

2
η†nσ

μηn), (B.73)

L2 = −�[(W 1
μ + iW 2

μ)η
†
eσ

μηn] +
W 3

μ

2
(η†eσ

μηe − η†nσ
μηn). (B.74)

The Lagrange equation
∂L
∂ξ∗1

= ∂μ

( ∂L
∂(∂μξ∗1 )

)
gives

0 =− i[(∂0 + ∂3)ξ1 + (∂1 − i∂2)ξ2], (B.75)

+ g1[(B0 +B3)ξ1 + (B1 − iB2)ξ2] +
m

ρρρ
(aη1 + cζ1).

The Lagrange equation
∂L
∂ξ∗2

= ∂μ

( ∂L
∂(∂μξ∗2 )

)
gives

0 =− i[(∂1 + i∂2)ξ1 + (∂0 − ∂3)ξ2], (B.76)

+ g1[(B1 + iB2)ξ1 + (B0 −B3)ξ2] +
m

ρρρ
(aη2 + cζ2).

Together these two equations read

0 =− i

(
∂0 + ∂3 ∂1 − i∂2
∂1 + i∂2 ∂0 − ∂3

)(
ξ1 0

ξ2 0

)
(B.77)

+ g1

(
B0 + B3 B1 − iB2

B1 + iB2 B0 −B3

)(
ξ1 0

ξ2 0

)
+
m

ρρρ

[
a

(
η1 0

η2 0

)
+ c

(
ζ1 0

ζ2 0

)]
.

Multiplying by
√
2 we get

−i∇̂φR + g1B̂φR +
m

ρρρ
(aφ̂L + cφ̂n) = 0. (B.78)
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Since φRσ3 = φR and φ̂Lσ3 = φ̂L, this reads

∇̂φRσ21 + g1B̂φR +
m

ρρρ
(aφ̂L + cφ̂n) = 0. (B.79)

Then using the conjugation M �→ M̂ we get

∇φ̂Rσ21 + g1Bφ̂R +
m

ρρρ
(a∗φL + c∗φn) = 0. (B.80)

The Lagrange equation
∂L
∂η∗1

= ∂μ

( ∂L
∂(∂μη∗1)

)
gives

0 =− i[(∂0 − ∂3)η1 + (−∂1 + i∂2)η2] +
g1
2
[(B0 −B3)η1 + (−B1 + iB2)η2]

− g2
2

⎛⎝ (W 1
0 −W 1

3 )ζ1 + (−W 1
1 + iW 1

2 )ζ2
+i[(W 2

0 −W 2
3 )ζ1 + (−W 2

1 + iW 2
2 )ζ2]

−(W 3
0 −W 3

3 )η1 − (−W 3
1 + iW 3

2 )η2

⎞⎠+
m

ρρρ
(a∗ξ1 + bζ∗2 ).

(B.81)

The Lagrange equation
∂L
∂η∗2

= ∂μ

( ∂L
∂(∂μη∗2)

)
gives

0 =− i[(−∂1 − i∂2)η1 + (∂0 + ∂3)η2] +
g1
2
[(−B1 − iB2)η1 + (B0 +B3)η2]

− g2
2

⎛⎝ (−W 1
1 − iW 1

2 )ζ1 + (W 1
0 +W 1

3 )ζ2
+i[(−W 2

1 − iW 2
2 )ζ1 + (W 2

0 +W 2
3 )ζ2]

−(−W 3
1 − iW 3

2 )η1 − (W 3
0 +W 3

3 )η2

⎞⎠+
m

ρρρ
(a∗ξ2 − bζ∗1 ).

(B.82)

Together these equations give

0 =− i

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(
η1 0

η2 0

)
+
g1
2

(
B0 −B3 −B1 + iB2

−B1 − iB2 B0 +B3

)(
η1 0

η2 0

)
(B.83)

− g2
2

[( W 1
0 −W 1

3 −W 1
1 + iW 1

2

−W 1
1 − iW 1

2 W 1
0 +W 1

3

)(
ζ1 0

ζ2 0

)
+ i

(
W 2

0 −W 2
3 −W 2

1 + iW 2
2

−W 2
1 − iW 2

2 W 2
0 +W 2

3

)(
ζ1 0

ζ2 0

)
−
(
W 3

0 −W 3
3 −W 3

1 + iW 3
2

−W 3
1 − iW 3

2 W 3
0 +W 3

3

)(
η1 0

η2 0

)]
+
m

ρρρ

[
a∗
(
ξ1 0

ξ2 0

)
+ b

(
ζ∗2 0

−ζ∗1 0

)]
.
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Multiplying by
√
2 this reads

0 =∇φ̂Lσ21 + g1
2
Bφ̂L +

g2
2
[−(W 1 + iW 2)φ̂n +W 3φ̂L] (B.84)

+
m

ρρρ
(a∗φR − bφnσ1).

Adding Eq. (B.80) to Eq. (B.84) we get the wave equation

0 =∇φ̂eσ21 + g1
2
B(φ̂L + 2φ̂R) +

g2
2
[−(W 1 + iW 2)φ̂n +W 3φ̂L] (B.85)

+
m

ρρρ
(a∗φe − bφnσ1 + c∗φn).

Without its mass term, this equation is the wave equation of the electron
Eq. (6.57).

The Lagrange equation
∂L
∂ζ∗1

= ∂μ

( ∂L
∂(∂μζ∗1 )

)
gives

0 =− i[(∂0 − ∂3)ζ1 + (−∂1 + i∂2)ζ2] +
g1
2
[(B0 −B3)ζ1 + (−B1 + iB2)ζ2]

+
g2
2

⎛⎝−[(W 1
0 −W 1

3 )η1 + (−W 1
1 + iW 1

2 )η2]

+i[(W 2
0 −W 2

3 )η1 + (−W 2
1 + iW 2

2 )η2]

−(W 3
0 −W 3

3 )ζ1 − (−W 3
1 + iW 3

2 )ζ2

⎞⎠+
m

ρρρ
(c∗ξ1 − bη∗2).

(B.86)

The Lagrange equation
∂L
∂ζ∗2

= ∂μ

( ∂L
∂(∂μζ∗2 )

)
gives

0 =− i[(−∂1 − i∂2)ζ1 + (∂0 + ∂3)ζ2] +
g1
2
[(−B1 − iB2)ζ1 + (B0 +B3)ζ2]

+
g2
2

⎛⎝−[(−W 1
1 − iW 1

2 )η1 + (W 1
0 +W 1

3 )η2]

+i[(−W 2
1 − iW 2

2 )η1 + (W 2
0 +W 2

3 )η2]

−(−W 3
1 − iW 3

2 )ζ1 − (W 3
0 +W 3

3 )ζ2

⎞⎠+
m

ρρρ
(c∗ξ2 + bη∗1).

(B.87)

Together these equations read

0 =− i

(
∂0 − ∂3 −∂1 + i∂2

−∂1 − i∂2 ∂0 + ∂3

)(
ζ1 0

ζ2 0

)
+
g1
2

(
B0 −B3 −B1 + iB2

−B1 − iB2 B0 +B3

)(
ζ1 0

ζ2 0

)
+
g2
2

[
−
(
W 1

0 −W 1
3 −W 1

1 + iW 1
2

−W 1
1 − iW 1

2 W 1
0 +W 1

3

)(
η1 0

η2 0

)
(B.88)

+ i

(
W 2

0 −W 2
3 −W 2

1 + iW 2
2

−W 2
1 − iW 2

2 W 2
0 +W 2

3

)(
η1 0

η2 0

)
−
(
W 3

0 −W 3
3 −W 3

1 + iW 3
2

−W 3
1 − iW 3

2 W 3
0 +W 3

3

)(
ζ1 0

ζ2 0

)]
+
m

ρρρ

[
b

(−η∗2 0

η∗1 0

)
+ c∗

(
ξ1 0

ξ2 0

)]
.
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Multiplying by
√
2 this reads

0 =∇φ̂nσ21 + g1
2
Bφ̂n +

g2
2
[(−W 1 + iW 2)φ̂L −W 3φ̂n]

+
m

ρρρ
(c∗φR + bφLσ1). (B.89)

Without its mass term, this equation is the wave equation Eq. (6.58) of the
electronic neutrino. The system made of the two wave equations Eq. (B.85)
and Eq. (B.89) is equivalent to the equation:

DΨγ012 +mρρρχl = 0, (B.90)

where

χl =
1

ρρρ2

(
a∗φe − bφnσ1 + c∗φn bφLσ1 + c∗φR

−b∗φ̂Lσ1 + cφ̂R aφ̂e + b∗φ̂nσ1 + cφ̂n

)
, (B.91)

or to the invariant equation

Ψ̃DΨγ012 +mρρρΨ̃χl = 0. (B.92)

B.4 Invariances

From Eq. (B.91) we get

ρρρ2Ψ̃χl =

(
φe φ

†
n

φn φ†e

)(
a∗φe − bφnσ1 + c∗φn bφLσ1 + c∗φR

−b∗φ̂Lσ1 + cφ̂R aφ̂e + b∗φ̂nσ1 + cφ̂n

)

=

(
U V

V̂ Û

)
, (B.93)

U = a∗φeφe − bφeφnσ1 + c∗φeφn − b∗φ†nφ̂Lσ1 + cφ†nφ̂R. (B.94)

We have

a∗φeφe = aa∗ (B.95)

−bφeφnσ1 − b∗φ†nφ̂Lσ1 =

(
bb∗ 0

−bc bb∗

)
= bb∗ +

bc

2
(−σ1 + iσ2) (B.96)

c∗φeφn + cφ†nφ̂R =

(
0 −b∗c∗

0 2cc∗

)
= cc∗(1− σ3) +

b∗c∗

2
(−σ1 − iσ2)

(B.97)

U = ρ2 −�(bc)σ1 −
(bc)σ2 − cc∗σ3 (B.98)

�(mρρρΨ̃χl) = mρρρ. (B.99)
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Therefore the Lagrangian density Eq. (B.71) is also the real part of the
invariant wave equation Eq. (B.90). The double link between the wave
equation and the Lagrangian density, that we have first encountered for
the electron alone, exists also in the electron+neutrino case.

The V term is simpler because we get
V = ac∗. (B.100)

B.4.1 Form invariance

Let M be any invertible element defining Eq. (1.42). We have
∇ =M∇′M̂ ; Ψ′ = NΨ, (B.101)

D = ÑD′N ; N =

(
M 0

0 M̂

)
; Ñ =

(
M 0

0 M †

)
, (B.102)

0 = Ψ̃DΨγ012 +mρρρΨ̃χl = Ψ̃ÑD′NΨγ012 +mρρρΨ̃χl

= Ψ̃′D′Ψ′γ012 +m′ρρρ′Ψ̃χl. (B.103)
We shall get the form invariance of the wave equation if and only if

Ψ̃χl = Ψ̃′χ′
l = Ψ̃Ñχ′

l, (B.104)

χ′
l = Ñ−1χl. (B.105)

And we have
1

ρρρ′2
(a′∗φ′e − b′φ′nσ1 + c′∗φ′n)

=
1

r2ρρρ2
(re−iθa∗Mφe − re−iθbMφnσ1 + re−iθc∗Mφn)

=
M

reiθ
1

ρρρ2
(a∗φe − bφnσ1 + c∗φn)

=M
−1 1

ρρρ2
(a∗φe − bφnσ1 + c∗φn). (B.106)

1

ρρρ′2
(b′φ′Lσ1 + c′∗φ′n)

=
1

r2ρρρ2
(re−iθbMφLσ1 + re−iθc∗Mφn)

=
M

reiθ
1

ρρρ2
(bφLσ1 + c∗φn) =M

−1 1

ρρρ2
(bφLσ1 + c∗φn). (B.107)

This gives Eq. (B.104) because

χ′
l =

(
M

−1
0

0 M †−1

)
χl = Ñ−1χl. (B.108)

And the wave is invariant under Cl∗3, therefore it is relativistic invariant.
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B.4.2 Gauge invariance — group generated by P0

We use the following form of P0

P0(Ψ) =
i

2
Ψ +

3

2
Ψγ21, (B.109)

Ψ′ = [exp(θP0)](Ψ) = e
θ
2 iΨe

3θ
2 γ21 . (B.110)

From Eq. (B.14) we deduce

D′Ψ′ = e−
θ
2 i(DΨ)e

3θ
2 γ21 , (B.111)

D′Ψ′γ012 = e−
θ
2 i(DΨγ012)e

3θ
2 γ21 . (B.112)

Equation Eq. (B.110) reads(
φ′e φ′n
φ̂′n φ̂′e

)
=

(
ei

θ
2 0

0 e−i θ2

)(
φe φn
φ̂n φ̂e

)(
e

3θ
2 iσ3 0

0 e
3θ
2 iσ3

)

=

(
ei

θ
2φee

3θ
2 iσ3 ei

θ
2φne

3θ
2 iσ3

e−i θ2 φ̂ne
3θ
2 iσ3 e−i θ2 φ̂ee

3θ
2 iσ3

)
. (B.113)

This reads (
ξ′1 −η′∗2
ξ′2 η′∗1

)
=

(
e2iθξ1 −e−iθη∗2
e2iθξ2 e−iθη∗1

)
(
0 −ζ′∗2
0 ζ ′∗1

)
=

(
0 −e−iθζ∗2
0 e−iθζ∗1

)
, (B.114)

and we get(
ξ′1
ξ′2

)
= e2iθ

(
ξ1
ξ2

)
;

(
η′1
η′2

)
= eiθ

(
η1
η2

)
;

(
ζ′1
ζ′2

)
= eiθ

(
ζ1
ζ2

)
. (B.115)

We then get for a, b, c:

a′ = eiθa ; a′a′∗ = aa∗, (B.116)

b′ = e2iθb ; b′b′∗ = bb∗, (B.117)

c′ = eiθc ; c′c′∗ = cc∗, (B.118)

ρρρ′ = ρρρ. (B.119)

We need to study

χ′
l =

1

ρρρ′2
×
(
a′∗φ′e − b′φ′nσ1 + c′∗φ′n b′φ′Lσ1 + c′∗φ′R

−b′∗φ̂′Lσ1 + c′φ̂′R a′φ̂′e + b′∗φ̂′nσ1 + c′φ̂′n

)
. (B.120)
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We get

a′∗φ′e − b′φ′nσ1 + c′∗φ′n

= e−iθa∗ei
θ
2φee

3θ
2 iσ3 − e2iθbei

θ
2φne

3θ
2 iσ3 + e−iθc∗ei

θ
2φne

3θ
2 iσ3 (B.121)

= e−i θ2 (a∗φe − e3iθbφne
3iθσ3σ1 + c∗φn)e

3θ
2 iσ3

= e−i θ2 (a∗φe − e3iθbφne
−3iθσ1 + c∗φn)e

3θ
2 iσ3

= e−i θ2 (a∗φe − bφnσ1 + c∗φn)e
3θ
2 iσ3 , (B.122)

and similarly

b′φ′Lσ1 + c′∗φ′R = e2iθbei
θ
2φLe

3θ
2 iσ3σ1 + e−iθc∗ei

θ
2φRe

3θ
2 iσ3

= ei
5θ
2 bφLe

3iθσ3σ1e
3θ
2 iσ3 + e−i θ2 c∗φRe

3θ
2 iσ3

= (ei
5θ
2 bφLe

−3iθσ1 + e−i θ2 c∗φR)e
3θ
2 iσ3

= e−i θ2 (bφLσ1 + c∗φR)e
3θ
2 iσ3 . (B.123)

This gives

χ′
l=

1

ρρρ2

(
e−i θ2 (a∗φe−bφnσ1 + c∗φn)e

3θ
2 iσ3 e−i θ2 (bφLσ1+c∗φR)e

3θ
2 iσ3

ei
θ
2 (−b∗φ̂Lσ1 + cφ̂R)e

3θ
2 iσ3 ei

θ
2 (aφ̂e + bφ̂nσ1+cφ̂n)e

3θ
2 iσ3

)
,

(B.124)
which reads

χ′
l = e−

θ
2 iχle

3θ
2 γ21 , (B.125)

and we finally get

D′Ψ′γ012 +mρρρ′χ′
l = e−

θ
2 i(DΨγ012 +mρρρχl)e

3θ
2 γ21 = 0. (B.126)

This allows us to say that the wave equation of the electron+neutrino pair
is gauge invariant under the group generated by P0.

B.4.3 Gauge invariance — group generated by P3

This generator acts only on left waves: we get

ξ′1 = ξ1 ; ξ′2 = ξ2. (B.127)

And with left waves we have

Ψ′
L = ΨLe

−θi, (B.128)(
φ′L φ′n
φ̂′n φ̂

′
L

)
=

(
φL φn
φ̂n φ̂L

)(
e−iθ 0

0 eiθ

)
, (B.129)

φ′L = e−iθφL, (B.130)

φ′n = eiθφn, (B.131)
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which reads

η′1 = eiθη1 ; η′2 = eiθη2 ; ζ′1 = e−iθζ1 ; ζ′2 = e−iθζ2. (B.132)

We then get for a, b, c:

a′ = e−iθa ; a′a′∗ = aa∗, (B.133)

b′ = b ; b′b′∗ = bb∗, (B.134)

c′ = eiθc ; c′c′∗ = cc∗, (B.135)

ρρρ′ = ρρρ. (B.136)

The covariant derivative is here reduced to

D = ∂∂∂ +
g2
2
W3P3. (B.137)

We let

[∂∂∂Ψ+
g2
2
W3P3(Ψ)]γ012 +mρρρχl =

(
A B

B̂ Â

)
. (B.138)

We have

A = (∇φ̂e + i
g2
2
W 3φ̂L)σ21 +

m

ρρρ
(a∗φe − bφnσ1 + c∗φn), (B.139)

B = (∇φ̂n − i
g2
2
W 3φ̂n)σ21 +

m

ρ
(bφLσ1 + c∗φR). (B.140)

Only the left column of B is not zero, this gives the simple result:

B′ = e−iθB. (B.141)

For A which has a right column and a left column we note

A = AL +AR, (B.142)

AL = (∇φ̂L + i
g2
2
W 3φ̂L)σ21 +

m

ρ
(a∗φR − bφnσ1), (B.143)

AR = ∇φ̂Rσ21 + m

ρ
(a∗φL + c∗φn). (B.144)

We then get

A′
L = eiθAL ; A′

R = AR, (B.145)

A′ = A

(
eiθ 0

0 1

)
. (B.146)

Since the same term multiplies the differential term and the mass term of
the wave equation, we may say that the equation is invariant under the
gauge group generated by P3.
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B.4.4 Gauge invariance — group generated by P1

This generator acts also only on left waves: we have

ξ′1 = ξ1 ; ξ′2 = ξ2. (B.147)

And with these left waves we have

Ψ′
L =

(
φ′L φ′n
φ̂′n φ̂

′
L

)
= ΨLe

θγ3i =

(
φL φn
φ̂n φ̂L

)(
cos(θ) −i sin(θ)σ3

−i sin(θ)σ3 cos(θ)

)
,

(B.148)

φ′L = cos(θ)φL − i sin(θ)φnσ3 ; φ′n = cos(θ)φn − i sin(θ)φLσ3, (B.149)

which reads with C = cos(θ) and S = sin(θ):

φ′L = CφL + iSφn ; φ̂′L = Cφ̂L − iSφ̂n, (B.150)

φ′n = Cφn + iSφL ; φ̂′n = Cφ̂n − iSφ̂L, (B.151)

η′1 = Cη1 − iSζ1 ; η′2 = Cη1 − iSζ2, (B.152)

ζ′1 = Cζ1 − iSη1 ; ζ′2 = Cζ2 − iSη2. (B.153)

We then get for a, b, c:

a′ = Ca+ iSc, (B.154)

b′ = b, (B.155)

c′ = Cc+ iSa, (B.156)

ρρρ′2 = a′a′∗ + b′b′∗ + c′c′∗ = aa∗ + bb∗ + cc∗ = ρρρ2. (B.157)

The covariant derivative is now reduced to

D = ∂∂∂ +
g2
2
W1P1. (B.158)

We let

[∂∂∂Ψ+
g2
2
W1P1(Ψ)]γ012 +mρρρχl =

(
A B

B̂ Â

)
. (B.159)

We have

A = ∇φ̂eσ21 − g2
2
W 1φ̂n +

m

ρρρ
(a∗φe − bφnσ1 + c∗φn), (B.160)

B = ∇φ̂nσ21 − g2
2
W 1φ̂L +

m

ρρρ
(bφLσ1 + c∗φR). (B.161)

As previously, for A, which has a left and a right column, we note:

A = AL +AR, (B.162)

AL = (∇φ̂L + i
g2
2
W 1φ̂L)σ21 +

m

ρρρ
(a∗φR − bφnσ1), (B.163)

AR = ∇φ̂Rσ21 + m

ρρρ
(a∗φL + c∗φn). (B.164)
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We then get

A′
L = CAL − iSB, (B.165)

A′
R = AR, (B.166)

B′ = CB − iSAL. (B.167)

And since the mass term changes in exactly the same way as the differential
term, we may say that the wave equation is gauge invariant under the
group generated by P1. The invariance under the group generated by P2 is
demonstrated similarly.

B.5 Complete wave

B.5.1 Scalar densities

There are now 6× 5/2 = 15 new densities:

s1 = 2(ξ1urη
∗
1ug + ξ2urη

∗
2ug) = 2(η∗2urη

∗
1ug − η∗1urη

∗
2ug), (B.168)

s2 = 2(ξ1ugη
∗
1ub + ξ2ugη

∗
2ub) = 2(η∗2ugη

∗
1ub − η∗1ugη

∗
2ub), (B.169)

s3 = −2(ξ1urη
∗
1ub + ξ2urη

∗
2ub) = 2(η∗2ubη

∗
1ur − η∗1ubη

∗
2ur), (B.170)

s4 = 2(ξ1drη
∗
1dg + ξ2drη

∗
2dg) = 2(η∗2drη

∗
1dg − η∗1drη

∗
2dg), (B.171)

s5 = 2(ξ1dgη
∗
1db + ξ2dgη

∗
2db) = 2(η∗2dgη

∗
1db − η∗1dgη

∗
2db), (B.172)

s6 = −2(ξ1drη
∗
1db + ξ2drη

∗
2db) = 2(η∗2dbη

∗
1dr − η∗1dbη

∗
2dr), (B.173)

s7 = 2(ξ1urη
∗
1dr + ξ2urη

∗
2dr) = 2(η∗2urη

∗
1dr − η∗1urη

∗
2dr), (B.174)

s8 = 2(ξ1ugη
∗
1dg + ξ2ugη

∗
2dg) = 2(η∗2ugη

∗
1dg − η∗1ugη

∗
2dg), (B.175)

s9 = 2(ξ1ubη
∗
1db + ξ2ubη

∗
2db) = 2(η∗2ubη

∗
1db − η∗1ubη

∗
2db), (B.176)

s10 = 2(ξ1urη
∗
1dg + ξ2urη

∗
2dg) = 2(η∗2urη

∗
1dg − η∗1urη

∗
2dg), (B.177)

s11 = 2(ξ1ugη
∗
1db + ξ2ugη

∗
2db) = 2(η∗2ugη

∗
1db − η∗1ugη

∗
2db), (B.178)

s12 = −2(ξ1drη
∗
1ub + ξ2drη

∗
2ub) = 2(η∗2ubη

∗
1dr − η∗1ubη

∗
2dr), (B.179)

s13 = 2(ξ1urη
∗
1db + ξ2urη

∗
2db) = 2(η∗2urη

∗
1db − η∗1urη

∗
2db), (B.180)

s14 = −2(ξ1drη
∗
1ug + ξ2drη

∗
2ug) = 2(η∗2ugη

∗
1dr − η∗1ugη

∗
2dr), (B.181)

s15 = −2(ξ1dgη
∗
1ub + ξ2dgη

∗
2ub) = 2(η∗2ubη

∗
1dg − η∗1ubη

∗
2dg). (B.182)
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B.5.2 Mass term

We used in [21] and in Eq. (B.91):

χl =
1

ρ21

(
a∗1φe + a∗2φnσ1 + a∗3φn −a∗2φeLσ1 + a∗3φeR
a2φ̂eLσ1 + a3φ̂eR a1φ̂e − a2φ̂nσ1 + a3φ̂n

)
, (B.183)

with φeR = φe(1 + σ3)/2 and φeL = φe(1 − σ3)/2, and we shall need also:

ρ22χr =

⎛⎜⎜⎜⎝
(
s∗4φdg − s∗6φdb − s∗7φur
−s∗12φub − s∗14φug

)
σ1

(
s∗1φug − s∗3φub + s∗7φdr

+s∗10φdg + s∗13φdb

)
σ1(

−s1φ̂ug + s3φ̂ub − s7φ̂dr
−s10φ̂dg − s13φ̂db

)
σ1

(
−s4φ̂dg + s6φ̂db + s7φ̂ur

+s12φ̂ub + s14φ̂ug

)
σ1

⎞⎟⎟⎟⎠ ,
(B.184)

ρ22χg =

⎛⎜⎜⎜⎝
(
s∗5φdb − s∗4φdr − s∗8φug
−s∗10φur − s∗15φub

)
σ1

(
s∗2φub − s∗1φur + s∗8φdg

+s∗11φdb + s∗14φdr

)
σ1(

−s2φ̂ub + s1φ̂ur − s8φ̂dg
−s11φ̂db − s14φ̂dr

)
σ1

(
−s5φ̂db + s4φ̂dr + s8φ̂ug

+s10φ̂ur + s15φ̂ub

)
σ1

⎞⎟⎟⎟⎠ ,
(B.185)

ρ22χb =

⎛⎜⎜⎜⎝
(
s∗6φdr − s∗5φdg − s∗9φub
−s∗11φug − s∗13φur

)
σ1

(
s∗3φur − s∗2φug + s∗9φdb

+s∗12φdr + s∗15φdg

)
σ1(

−s3φ̂ur + s2φ̂ug − s9φ̂db
−s12φ̂dr − s15φ̂dg

)
σ1

(
−s6φ̂dr + s5φ̂dg + s9φ̂ub

+s11φ̂ug + s13φ̂ur

)
σ1

⎞⎟⎟⎟⎠ .
(B.186)

B.5.3 Group generated by P 0

We have here

P 0(Ψ
c) = Ψc(−1

3
L21), (B.187)

Ψ′c = [exp(θP 0)](Ψ
c) = Ψc exp(−θ

3
L21), (B.188)

B′
μ = Bμ − 2

g1
Bμ. (B.189)

To get the gauge invariance of the wave equation we must have

χ′c = χc exp(−θ
3
L21); χ

′
c = χc exp(−θ

3
γ21), c = r, g, b. (B.190)
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This is satisfied because

φ′dc = φdce
−i θ3σ3 ; φ′uc = φuce

−i θ3σ3 , (B.191)

η′∗1dc = ei
θ
3 η∗1dc; η

′∗
1uc = ei

θ
3 η∗1uc, (B.192)

η′∗2dc = ei
θ
3 η∗2dc; η

′∗
2uc = ei

θ
3 η∗2uc, (B.193)

s′j = e2i
θ
3 sj , j = 1, 2, . . . , 15. (B.194)

All χc terms contain in the upper line s∗jφdcσ1 and s∗jφucσ1. We have

φ′dc = φdce
−i θ3σ3 = ei

θ
3φdc, (B.195)

s′∗jφ
′
dcσ1 = e−i θ3φdcσ1 = φdce

θ
3σ12σ1 = φdcσ1e

− θ
3σ12 , (B.196)

χ′
c = χc exp(−θ

3
γ21), (B.197)

χ′c = χc exp(−θ
3
L21). (B.198)

This finally gives

(D′Ψ′c)L012 +m2ρ
′
2χ

′c = [(DΨc)L012 +m2ρ2χ
c] exp(−θ

3
L21) = 0.

(B.199)
Therefore the wave equation is invariant under the gauge group generated
by P 0.

B.5.4 Group generated by P 1

We get in this case

P 1(Ψ
c) = ΨcL35, (B.200)

Ψ′c = [exp(θP 1)](Ψ
c) = Ψc exp(θL35), (B.201)

W ′1
μ =W 1

μ − 2

g2
∂μθ. (B.202)

Since P 1(Ψ
c) = ΨcL35 we get

Ψ′c = [exp(θP 1)](Ψ
c) = Ψc exp(θL35), (B.203)

Ψ′
c = Ψce

θγ3i, c = r, g, b. (B.204)

We let

C = cos(θ) ; S = sin(θ). (B.205)

Then Eq. (B.204) is equivalent to the system

φ̂′dc = Cφ̂dc − iSφ̂ucσ3, (B.206)

φ̂′uc = Cφ̂uc − iSφ̂dcσ3, (B.207)
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or to the system

η′1dc = Cη1dc − iSη1uc; η
′∗
1dc = Cη∗1dc + iSη∗1uc, (B.208)

η′2dc = Cη2dc − iSη2uc; η
′∗
2dc = Cη∗2dc + iSη∗2uc, (B.209)

η′1uc = Cη1uc − iSη1dc; η
′∗
1uc = Cη∗1uc + iSη∗1dc, (B.210)

η′2uc = Cη2uc − iSη2dc; η
′∗
2uc = Cη∗2uc + iSη∗2dc. (B.211)

We then get

s′1 = C2s1 − S2s4 + iCS(s10 − s14), (B.212)

s′4 = C2s4 − S2s1 + iCS(s10 − s14), (B.213)

s′10 = C2s10 + S2s14 + iCS(s1 + s4), (B.214)

s′14 = C2s14 + S2s10 − iCS(s1 + s4). (B.215)

This implies

s′1s
′∗
1 + s′4s

′∗
4 + s′10s

′∗
10 + s′14s

′∗
14 = s1s

∗
1 + s4s

∗
4 + s10s

∗
10 + s14s

∗
14. (B.216)

Similarly, permuting colors we get

s′2 = C2s2 − S2s5 + iCS(s11 − s15), (B.217)

s′5 = C2s5 − S2s2 + iCS(s11 − s15), (B.218)

s′11 = C2s11 + S2s15 + iCS(s2 + s5), (B.219)

s′15 = C2s15 + S2s11 − iCS(s2 + s5). (B.220)

This implies

s′2s
′∗
2 + s′5s

′∗
5 + s′11s

′∗
11 + s′15s

′∗
15 = s2s

∗
2 + s5s

∗
5 + s11s

∗
11 + s15s

∗
15. (B.221)

and also

s′3 = C2s3 − S2s6 + iCS(s12 − s13), (B.222)

s′6 = C2s6 − S2s3 + iCS(s12 − s13), (B.223)

s′12 = C2s12 + S2s13 + iCS(s3 + s6), (B.224)

s′13 = C2s13 + S2s12 − iCS(s3 + s6). (B.225)

This implies

s′3s
′∗
3 + s′6s

′∗
6 + s′12s

′∗
12 + s′13s

′∗
13 = s3s

∗
3 + s6s

∗
6 + s12s

∗
12 + s13s

∗
13. (B.226)

Moreover we have

s′7 = s7; s
′
8 = s8; s

′
9 = s9. (B.227)

We then get

ρ′ = ρ. (B.228)
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Next we have

χr =

(
A B

B̂ Â

)
; χ′

r =

(
A′ B′

B̂′ Â′

)
, (B.229)

Â = (−s4φ̂dg + s6φ̂db + s7φ̂ur + s12φ̂ub + s14φ̂ug)σ1, (B.230)

B̂ = (−s1φ̂ug + s3φ̂ub − s7φ̂dr − s10φ̂dg − s13φ̂db)σ1. (B.231)

And we get

Â′ = CÂ− iSB̂σ3, (B.232)

B̂′ = CB̂ − iSÂσ3, (B.233)

χ′
r = χr

(
C −iSσ3

−iSσ3 C

)
= χre

θγ3i. (B.234)

Since we get the same relation for colors g and b we finally have

χ′c = χc exp(θL35),

(D′Ψ′c)L012 +m2ρ
′
2χ

′c = (DΨc) exp(θL35)L012 +m2ρ
′
2χ

′c

= [(DΨc)L012 +m2ρ2χ
c] exp(θL35) = 0. (B.235)

The wave equation with mass term is then gauge invariant under the group
generated by P 1.

B.5.5 Group generated by P 2

We have here

P 2(Ψ
c) = ΨcL0125, (B.236)

Ψ′c = [exp(θP 2)](Ψ
c) = Ψc exp(θL0125), (B.237)

W ′2
μ =W 2

μ − 2

g2
∂μθ. (B.238)

Since P 2(Ψ
c) = ΨcL0125 we have

Ψ′c = [exp(θP 2)](Ψ
c) = Ψc exp(θL0125), (B.239)

Ψ′
c = Ψce

θγ3 , c = r, g, b. (B.240)

We let

C = cos(θ) ; S = sin(θ). (B.241)

Then Eq. (B.240) is equivalent to the system

φ̂′dc = Cφ̂dc + Sφ̂uc, (B.242)

φ̂′uc = Cφ̂uc − Sφ̂dc, (B.243)
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or to the system

η′1dc = Cη1dc + Sη1uc; η
′∗
1dc = Cη∗1dc + Sη∗1uc, (B.244)

η′2dc = Cη2dc + Sη2uc; η
′∗
2dc = Cη∗2dc + Sη∗2uc, (B.245)

η′1uc = Cη1uc − Sη1dc; η
′∗
1uc = Cη∗1uc − Sη∗1dc, (B.246)

η′2uc = Cη2uc − Sη2dc; η
′∗
2uc = Cη∗2uc − Sη∗2dc. (B.247)

We then have

s′1 = C2s1 + S2s4 − CSs10 + CSs14, (B.248)

s′4 = C2s4 + S2s1 + CSs10 − CSs14, (B.249)

s′10 = C2s10 + S2s14 + CSs1 − CSs4, (B.250)

s′14 = C2s14 + S2s10 − CSs1 + CSs4. (B.251)

This implies

s′1s
′∗
1 + s′4s

′∗
4 + s′10s

′∗
10 + s′14s

′∗
14 = s1s

∗
1 + s4s

∗
4 + s10s

∗
10 + s14s

∗
14. (B.252)

Similarly permuting colors we get

s′2 = C2s2 + S2s5 − CSs11 + CSs15, (B.253)

s′5 = C2s5 + S2s2 + CSs11 − CSs15, (B.254)

s′11 = C2s11 + S2s15 + CSs2 − CSs5, (B.255)

s′15 = C2s15 + S2s11 − CSs2 + CSs5. (B.256)

This implies

s′2s
′∗
2 + s′5s

′∗
5 + s′11s

′∗
11 + s′15s

′∗
15 = s2s

∗
2 + s5s

∗
5 + s11s

∗
11 + s15s

∗
15. (B.257)

and also

s′3 = C2s3 + S2s6 − CSs12 + CSs13, (B.258)

s′6 = C2s6 + S2s3 + CSs12 − CSs13, (B.259)

s′12 = C2s12 + S2s13 + CSs3 − CSs6, (B.260)

s′13 = C2s13 + S2s12 − CSs3 + CSs6. (B.261)

This implies

s′3s
′∗
3 + s′6s

′∗
6 + s′12s

′∗
12 + s′13s

′∗
13 = s3s

∗
3 + s6s

∗
6 + s12s

∗
12 + s13s

∗
13. (B.262)

Moreover we get

s′7 = s7; s
′
8 = s8; s

′
9 = s9. (B.263)

We then get

ρ′ = ρ. (B.264)
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Next we have with Eq. (B.241)

Â′ = CÂ− SB̂σ3, (B.265)

B̂′ = CB̂ + SÂσ3, (B.266)

χ′
r = χr

(
C −Sσ3
Sσ3 C

)
= χre

−θγ3. (B.267)

Since we get the same relation for g and b colors we finally get

χ′c = χc exp(−θL0125),

(D′Ψ′c)L012 +m2ρ
′
2χ

′c = (DΨc) exp(θL0125)L012 +m2ρ
′
2χ

′c

= [(DΨc)L012 +m2ρ2χ
c] exp(−θL0125) = 0.

(B.268)

The complete wave equation with mass term is then gauge invariant under
the group generated by P 2.

B.5.6 Group generated by P 3

We have here

P 3(Ψ
c) = ΨcL3012, (B.269)

Ψ′c = [exp(θP 3)](Ψ
c) = Ψc exp(θL3012), (B.270)

W ′3
μ =W 3

μ − 2

g2
∂μθ. (B.271)

Since P 3(Ψ
c) = ΨcL3012 we get

Ψ′c = [exp(θP 3)](Ψ
c) = Ψc exp(θL3012), (B.272)

Ψ′
c = Ψce

θγ3012 , c = r, g, b. (B.273)

This is equivalent to the system

φ̂′dc = eiθφ̂dc, (B.274)

φ̂′uc = e−iθφ̂uc, (B.275)

or to the system

η′1dc = eiθη1dc; η
′∗
1dc = e−iθη∗1dc, (B.276)

η′2dc = eiθη2dc; η
′∗
2dc = e−iθη∗2dc, (B.277)

η′1uc = e−iθη1uc; η
′∗
1uc = eiθη∗1uc, (B.278)

η′2uc = e−iθη2uc; η
′∗
2uc = eiθη∗2uc. (B.279)
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We then get

s′1 = e2iθs1; s
′
2 = e2iθs2; s

′
3 = e2iθs3, (B.280)

s′4 = e−2iθs4; s
′
5 = e−2iθs5; s

′
6 = e−2iθs6, (B.281)

s′7 = s7; s
′
8 = s8; s

′
9 = s9, (B.282)

s′10 = s10; s
′
11 = s11; s

′
12 = s12, (B.283)

s′13 = s13; s
′
14 = s14; s

′
15 = s15. (B.284)

This implies

ρ′ = ρ. (B.285)

Next we have with Eq. (B.229)

Â′ = e−iθÂ ; A′ = eiθA, (B.286)

B̂′ = eiθB̂ ; B′ = e−iθB, (B.287)

χ′
r = χr

(
eiθ 0

0 e−iθ

)
= χre

θi. (B.288)

Since we have the same relation for g and b colors we finally get

χ′c = χc exp(−θL3012),

(D′Ψ′c)L012 +m2ρ
′
2χ

′c = (DΨc) exp(θL3012)L012 +m2ρ
′
2χ

′c

= [(DΨc)L012 +m2ρ2χ
c] exp(−θL3012) = 0.

(B.289)

The complete wave equation with mass term is then gauge invariant under
the group generated by P 3.

B.5.7 Group generated by Γ1

We now use the transformation

Ψ′
r = CΨr + SiΨg; C = cos(θ); S = sin(θ), (B.290)

Ψ′
g = CΨg + SiΨr, (B.291)

Ψ′
b = Ψb. (B.292)

We may then forget here Ψb which does not change. The gauge invariance
signifies that the system

∂∂∂Ψr = −g3
2
G1iΨg +m2ρ2χrγ012,

∂∂∂Ψg = −g3
2
G1iΨr +m2ρ2χg, γ012 (B.293)
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must be equivalent to the system

∂∂∂Ψ′
r = −g3

2
G′1iΨ′

g +m2ρ
′
2χ

′
rγ012,

∂∂∂Ψ′
g = −g3

2
G′1iΨ′

r +m2ρ
′
2χ

′
gγ012. (B.294)

By using Eq. (B.290) and Eq. (B.291) the Eq. (B.293) system is equivalent
to the Eq. (B.294) system if and only if

G′1 = G1 − 2

g3
∂∂∂θ. (B.295)

We name f1 the gauge transformation:

f1 : Ψ
c �→ iΓ1(Ψ

c) =

(
0 iΨg

iΨr 0

)
, (B.296)

which implies with C = cos(θ) and S = sin(θ)

[exp(θf1)](Ψ
c) =

(
0 CΨr + SiΨg

CΨg + SiΨr Ψb

)
=

(
0 Ψ′

r

Ψ′
g Ψ′

b

)
, (B.297)

Ψ′
r = CΨr + SiΨg, (B.298)

Ψ′
g = CΨg + SiΨr, (B.299)

Ψ′
b = Ψb. (B.300)

The equality Eq. (B.290) is equivalent to the system

η′∗1dr = Cη∗1dr + iSη∗1dg; η
′∗
1ur = Cη∗1ur + iSη∗1ug, (B.301)

η′∗2dr = Cη∗2dr + iSη∗2dg; η
′∗
2ur = Cη∗2ur + iSη∗2ug. (B.302)

The equality Eq. (B.291) is equivalent to the system

η′∗1dg = Cη∗1dg + iSη∗1dr; η
′∗
1ug = Cη∗1ug + iSη∗1ur, (B.303)

η′∗2dg = Cη∗2dg + iSη∗2dr; η
′∗
2ug = Cη∗2ug + iSη∗2ur. (B.304)

This gives for the scalars sj
s′1 = s1; s

′
4 = s4; s

′
9 = s9, (B.305)

s′2 = Cs2 − iSs3; s
′
3 = Cs3 − iSs2, (B.306)

s′5 = Cs5 − iSs6; s
′
6 = Cs6 − iSs5, (B.307)

s′11 = Cs11 + iSs13; s
′
13 = Cs13 + iSs11, (B.308)

s′12 = Cs12 + iSs15; s
′
15 = Cs15 + iSs12, (B.309)

s′7 = C2s7 − S2s8 + iCSs10 + iCSs14, (B.310)

s′8 = C2s8 − S2s7 + iCSs14 + iCSs10, (B.311)

s′10 = C2s10 − S2s14 + iCSs7 + iCSs8, (B.312)

s′14 = C2s14 − S2s10 + iCSs8 + iCSs7. (B.313)
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We then have

s′2s
′∗
2 + s′3s

′∗
3 = s2s

∗
2 + s3s

∗
3, (B.314)

s′5s
′∗
5 + s′6s

′∗
6 = s5s

∗
5 + s6s

∗
6, (B.315)

s′11s
′∗
11 + s′13s

′∗
13 = s11s

∗
11 + s13s

∗
13, (B.316)

s′12s
′∗
12 + s′15s

′∗
15 = s12s

∗
12 + s15s

∗
15, (B.317)

s′7s
′∗
7 + s′8s

′∗
8 + s′10s

′∗
10 + s′14s

′∗
14 = s7s

∗
7 + s8s

∗
8 + s10s

∗
10 + s14s

∗
14, (B.318)

ρ′ = ρ. (B.319)

Next we let

χr =

(
Ar Br

B̂r Âr

)
; χ′

r =

(
A′

r B
′
r

B̂′
r Â

′
r

)
, (B.320)

χg =

(
Ag Bg

B̂g Âg

)
; χ′

g =

(
A′

g B
′
g

B̂′
g Â

′
g

)
, (B.321)

and we get

A′
r = CAr − iSAg; B

′
r = CBr − iSBg, (B.322)

A′
g = CAg − iSAr; B

′
g = CBg − iSBr. (B.323)

This gives the awaited result:

ρ′ = ρ, (B.324)

χ′
r = Cχr − Siχg, (B.325)

χ′
g = Cχg − Siχr. (B.326)

The change of sign between Eq. (B.290) and Eq. (B.325) comes from the
anticommutation between i and ∂∂∂.

B.5.8 Group generated by Γk , k > 1

We use with k = 2 the gauge transformation

Ψ′
r = CΨr + SΨg; C = cos(θ); S = sin(θ), (B.327)

Ψ′
g = CΨg − SΨr, (B.328)

Ψ′
b = Ψb. (B.329)

The gauge invariance means that the system

∂∂∂Ψr = −g3
2
G2Ψg +m2ρ2χrγ012,

∂∂∂Ψg =
g3
2
G2Ψr +m2ρ2χgγ012, (B.330)
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must be equivalent to the system

∂∂∂Ψ′
r = −g3

2
G′2Ψ′

g +m2ρ
′
2χ

′
rγ012,

∂∂∂Ψ′
g =

g3
2
G′2Ψ′

r +m2ρ
′
2χ

′
gγ012. (B.331)

By using the relations Eq. (B.327) and Eq. (B.328) the Eq. (B.330) system
is equivalent to Eq. (B.331) if and only if

G′2 = G2 − 2

g3
∂∂∂θ, (B.332)

because we have

ρ′ = ρ, (B.333)

χ′
r = Cχr + Sχg, (B.334)

χ′
g = Cχg − Sχr. (B.335)

The k = 3 case will be detailed in Sec. B.5.9 and the k = 8 case will be
detailed in Sec. B.5.10. The k = 4 and k = 6 cases are similar to k = 1 and
the k = 5 and k = 7 cases are similar to k = 2 by permuting color indices.

B.5.9 Group generated by Γ3

We name f3 the gauge transformation:

f3 : Ψc �→ iΓ3(Ψ
c) =

(
0 iΨr

−iΨg 0

)
, (B.336)

which implies

[exp(θf3)](Ψ
c) =

(
0 eθiΨr

e−θiΨg Ψb

)
=

(
0 Ψ′

r

Ψ′
g Ψ′

b

)
, (B.337)

Ψ′
r = eθiΨr, (B.338)

Ψ′
g = e−θiΨg, (B.339)

Ψ′
b = Ψb. (B.340)

The equality Eq. (B.338) is equivalent to(
φ′dr φ

′
ur

φ̂′ur φ̂′dr

)
=

(
eiθ 0

0 e−iθ

)(
φdr φur
φ̂ur φ̂dr

)
. (B.341)

The equality Eq. (B.339) is equivalent to(
φ′dg φ

′
ug

φ̂′ug φ̂
′
dg

)
=

(
e−iθ 0

0 eiθ

)(
φdg φug
φ̂ug φ̂dg

)
. (B.342)
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We get
η′∗1dr = e−iθη∗1dr; η

′∗
1ur = e−iθη∗1ur , (B.343)

η′∗2dr = e−iθη∗2dr; η
′∗
2ur = e−iθη∗2ur , (B.344)

η′∗1dg = eiθη∗1dg; η
′∗
1ug = eiθη∗1ug, (B.345)

η′∗2dg = eiθη∗2dg; η
′∗
2ug = eiθη∗2ug. (B.346)

This gives
s′1 = s1 ; s′2 = e−iθs2 ; s′3 = eiθs3, (B.347)

s′4 = s4 ; s′5 = e−iθs5 ; s′6 = eiθs6, (B.348)

s′9 = s9 ; s′8 = e−2iθs8 ; s′7 = e2iθs7, (B.349)

s′10 = s10 ; s′11 = e−iθs11 ; s′12 = eiθs12, (B.350)

s′14 = s14 ; s′15 = e−iθs15 ; s′13 = eiθs13, (B.351)
so we deduce

s′js
′∗
j = sjs

∗
j , j = 1, 2, . . . , 15, (B.352)

ρ′ = ρ, (B.353)

χ′
r = e−iθχr, (B.354)

χ′
g = eiθχg, (B.355)

These relations are the awaited ones because
∂∂∂Ψ′

r = ∂∂∂(eiθΨr) = e−iθ(−i∂∂∂θΨr + ∂∂∂Ψr), (B.356)

∂∂∂Ψ′
g = ∂∂∂(e−iθΨg) = eiθ(i∂∂∂θΨg + ∂∂∂Ψg), (B.357)

G′3 = G3 − 2

g3
∂∂∂θ. (B.358)

B.5.10 Group generated by Γ8

We name f8 the gauge transformation

f8 : Ψc �→ iΓ8(Ψ
c) =

(
0 i√

3
Ψr

i√
3
Ψg − 2i√

3
Ψb

)
, (B.359)

which implies

[exp(θf8)](Ψ
c) =

(
0 e

θi√
3Ψr

e
θi√
3Ψg e

− 2θi√
3Ψb

)
=

(
0 Ψ′

r

Ψ′
g Ψ′

b

)
, (B.360)

Ψ′
r = exp(

θi√
3
)Ψr, (B.361)

Ψ′
g = exp(

θi√
3
)Ψg, (B.362)

Ψ′
b = exp(−2θi√

3
)Ψb. (B.363)
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This gives

φ′dr = exp(
iθ√
3
)φdr; φ

′
ur = exp(

iθ√
3
)φur , (B.364)

φ′dg = exp(
iθ√
3
)φdg; φ

′
ug = exp(

iθ√
3
)φug, (B.365)

φ′db = exp(−2iθ√
3
)φdb; φ

′
ub = exp(−2iθ√

3
)φub. (B.366)

We then get

η′∗1dr = exp(
iθ√
3
)η∗1dr; η

′∗
1dg = exp(

iθ√
3
)η∗1dg; η

′∗
1db = exp(−2iθ√

3
)η∗1dg,

(B.367)

η′∗2dr = exp(
iθ√
3
)η∗2dr; η

′∗
2dg = exp(

iθ√
3
)η∗2dg; η

′∗
2db = exp(−2iθ√

3
)η∗2dg,

(B.368)

η′∗1ur = exp(
iθ√
3
)η∗1ur ; η

′∗
1ug = exp(

iθ√
3
)η∗1ug ; η

′∗
1ub = exp(−2iθ√

3
)η∗1ug ,

(B.369)

η′∗2ur = exp(
iθ√
3
)η∗2ur ; η

′∗
2ug = exp(

iθ√
3
)η∗2ug ; η

′∗
2ub = exp(−2iθ√

3
)η.2ug

(B.370)

This implies

s′1 = exp(
2iθ√
3
)s1; s

′
2 = exp(− iθ√

3
)s2; s

′
3 = exp(− iθ√

3
)s3, (B.371)

s′4 = exp(
2iθ√
3
)s4; s

′
5 = exp(− iθ√

3
)s5; s

′
6 = exp(− iθ√

3
)s6, (B.372)

s′7 = exp(
2iθ√
3
)s7; s

′
8 = exp(

2iθ√
3
)s8; s

′
9 = exp(−4iθ√

3
)s9, (B.373)

s′10 = exp(
2iθ√
3
)s10; s

′
11 = exp(− iθ√

3
)s11; s

′
12 = exp(− iθ√

3
)s12, (B.374)

s′13 = exp(− iθ√
3
)s13; s

′
14 = exp(

2iθ√
3
)s14; s

′
15 = exp(− iθ√

3
)s15. (B.375)

We then get the awaited results:

s′js
′∗
j = sjs

∗
j , j = 1, 2, . . . , 15 ; ρ′ = ρ, (B.376)

χ′
r = exp(− iθ√

3
)χr; χ

′
g = exp(− iθ√

3
)χg; χ

′
b = exp(

2iθ√
3
)χb. (B.377)
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We deduce:

D′Ψ′ = γμD′
μΨ

′ = γμea
0 b

2 i(DμΨ)ea
0(a+ b

2 )γ21

= e−a0 b
2 i(DΨ)ea

0(a+ b
2 )γ21 , (B.378)

because i anti-commutes with each γμ. Next we have

Ψ̃′ = ea
0(a+ b

2 )γ̃21Ψ̃ea
0 b

2
˜i

= e−a0(a+ b
2 )γ21Ψ̃ea

0 b
2 i, (B.379)

Ψ̃′D′Ψ′ = e−a0(a+ b
2 )γ21Ψ̃ea

0 b
2 ie−a0 b

2 i(DΨ)ea
0(a+ b

2 )γ21

= e−a0(a+ b
2 )γ21Ψ̃(DΨ)ea

0(a+ b
2 )γ21 . (B.380)
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Appendix C

The hydrogen atom

We study the resolution of the homogeneous nonlinear equation for

the hydrogen atom. Our resolution uses a method separating the vari-

ables in spherical coordinates. The solutions are very near particular

solutions of the Dirac equation which are not the usual ones, and which

have a Yvon–Takabayasi angle that is everywhere defined and small.

The hydrogen atom is the jewel of the Dirac theory. The solutions
calculated by C. G. Darwin [6], which we may also find in newer reports [55],
are proper values of an ad hoc operator, coming from the non-relativistic
theory, that is not the total angular momentum operator. These solutions
give the expected number of states, the true formula for the energy levels,
and have the expected non-relativistic approximations. This was considered
very satisfying. Most of Darwin’s solutions suffer the disadvantage that
they have a Yvon–Takabayasi angle that is not everywhere defined and
small. Therefore they cannot be linear approximations of the solutions to
our homogeneous nonlinear equation.

We got previously [9] other solutions in the linear case, which have a
Yvon–Takabayasi angle everywhere defined and small, and so those may be
the linear approximations of the solutions to our nonlinear equation.

C.1 Separating variables

To solve the Dirac equation Eq. (2.21) or the homogeneous nonlinear
equation Eq. (3.1), in the case of the hydrogen atom, two methods exist.
We shall use here, not the initial method based on the non-relativistic wave
equations, but the new method invented more recently by H. Krüger [44],
a classic method from the mathematical point of view for an equation with

203
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partial derivatives, separating the variables in spherical coordinates:

x1 = r sin θ cosϕ ; x2 = r sin θ sinϕ ; x3 = r cos θ. (C.1)

We use 7 the following notations:

i1 = σ23 = iσ1 ; i2 = σ31 = iσ2 ; i3 = σ12 = iσ3, (C.2)

S = e−
ϕ
2 i3e−

θ
2 i2 ; Ω = r−1(sin θ)−

1
2S, (C.3)

�∂′ = σ3∂r +
1

r
σ1∂θ +

1

r sin θ
σ2∂ϕ. (C.4)

H. Krüger got the remarkable identity:

�∂ = Ω�∂′Ω−1 (C.5)

that, with:

∇′ = ∂0 − �∂′ = ∂0 − (σ3∂r +
1

r
σ1∂θ +

1

r sin θ
σ2∂ϕ), (C.6)

also gives

Ω−1∇ = ∇′Ω−1. (C.7)

In the wave equations Eq. (2.21) or Eq. (3.1), to separate the temporal
variable x0 = ct and the angular variable ϕ from the radial variable r and
the angular variable θ, we let:

φ = ΩXe(λϕ−Ex0+δ)i3 , (C.8)

where X is a function, with value into the Pauli algebra, of r and θ alone,
�cE is the energy of the electron, and δ is an arbitrary phase which plays no
role as the equations Eq. (2.21) and Eq. (3.1) are electric gauge invariant.
λ is a real constant. We get then

Ω−1φ = Xe(λϕ−Ex0+δ)i3 , (C.9)

Ω−1φ̂ = X̂e(λϕ−Ex0+δ)i3 . (C.10)

We also have:

ρeiβ = det(φ) = det(Ω) det(X) det[e(λϕ−Ex0+δ)i3 ]

det(Ω) = r−2(sin θ)−1 ; det[e(λϕ−Ex0+δ)i3 ] = 1

ρeiβ =
det(X)

r2 sin θ
. (C.11)

7. S has nothing to do with the tensor S3 and Ω must not be confused with the
relativistic invariants Ω1 and Ω2 studied in chapter 2.
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So, if we let:

ρXe
iβX = det(X), (C.12)

we get:

ρ =
ρX

r2 sin θ
; β = βX . (C.13)

Thus with Eq. (C.8) for the wave, the Yvon–Takabayasi angle does not
depend on time or on the ϕ angle, only on r and θ. It is why the separation
of variables, in the linear case or in the nonlinear case, may begin in the
same way. We have

∇′Ω−1φ̂ = (∂0 − σ3∂r − 1

r
σ1∂θ − 1

r sin θ
σ2∂ϕ)[X̂e

(λϕ−Ex0+δ)i3 ], (C.14)

∂0(X̂e
(λϕ−Ex0+δ)i3 ) = −EX̂i3e(λϕ−Ex0+δ)i3 , (C.15)

∂r(X̂e
(λϕ−Ex0+δ)i3 ) = (∂rX̂)e(λϕ−Ex0+δ)i3 , (C.16)

∂θ(X̂e
(λϕ−Ex0+δ)i3 ) = (∂θX̂)e(λϕ−Ex0+δ)i3 , (C.17)

∂ϕ(X̂e
(λϕ−Ex0+δ)i3 ) = λX̂i3e

(λϕ−Ex0+δ)i3 . (C.18)

We get then:

∇φ̂ = Ω(−EX̂i3−σ3∂rX̂− 1

r
σ1∂θX̂− λ

r sin θ
σ2X̂i3)e

(λϕ−Ex0+δ)i3 . (C.19)

For the hydrogen atom, we have:

qA = qA0 = −α
r

; α =
e2

�c
, (C.20)

where α is the fine structure constant. We have:

qAφ̂σ12 = −α
r
φ̂i3 = −α

r
ΩX̂e(λϕ−Ex0+δ)i3 i3

= Ω(−α
r
X̂i3)e

(λϕ−Ex0+δ)i3 . (C.21)

So the homogeneous nonlinear equation Eq. (3.1) becomes

−EX̂i3−σ3∂rX̂− 1

r
σ1∂θX̂− λ

r sin θ
σ2X̂i3−α

r
X̂i3+me

−iβXi3 = 0, (C.22)

that is to say:

(E +
α

r
)X̂i3 + σ3∂rX̂ +

1

r
σ1∂θX̂ +

λ

r sin θ
σ2X̂i3 = me−iβXi3, (C.23)

while the Dirac equation gives:

(E +
α

r
)X̂i3 + σ3∂rX̂ +

1

r
σ1∂θX̂ +

λ

r sin θ
σ2X̂i3 = mXi3. (C.24)
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We let now:

X =

(
a −b∗

c d∗

)
, (C.25)

where a, b, c, d are functions with complex value of the real variables r
and θ. We get then:

X̂ =

(
d −c∗

b a∗

)
. (C.26)

We get then:

e−iβXi3 = ie−iβXσ3 = ie−iβ

(
a b∗

c −d∗

)
, (C.27)

X̂i3 =

(
d −c∗

b a∗

)(
i 0

0 −i
)

=

(
id ic∗

ib −ia∗
)
, (C.28)

σ3∂rX̂ =

(
1 0

0 −1

)(
∂rd −∂rc∗
∂rb ∂ra

∗

)
=

(
∂rd −∂rc∗
−∂rb −∂ra∗

)
, (C.29)

σ1∂θX̂ =

(
0 1

1 0

)(
∂θd −∂θc∗
∂θb ∂θa

∗

)
=

(
∂θb ∂θa

∗

∂θd −∂θc∗
)
, (C.30)

σ2X̂i3 = i2X̂σ3 =

(
0 1

−1 0

)(
d −c∗

b a∗

)(
1 0

0 −1

)
=

(
b −a∗

−d −c∗

)
. (C.31)

Consequently the nonlinear equation Eq. (3.1) becomes:

(E +
α

r
)

(
id ic∗

ib− ia∗

)
+

(
∂rd −∂rc∗
−∂rb −∂ra∗

)
(C.32)

+
1

r

(
∂θb ∂θa

∗

∂θd −∂θc∗
)
+

λ

r sin θ

(
b −a∗

−d −c∗

)
= ime−iβ

(
a b∗

c −d∗

)
.

Conjugating equations with *, we get the system:

i(E +
α

r
)d+ ∂rd+

1

r
(∂θ +

λ

sin θ
)b = ime−iβa,

−i(E +
α

r
)c− ∂rc+

1

r
(∂θ − λ

sin θ
)a = −imeiβb, (C.33)

i(E +
α

r
)b− ∂rb+

1

r
(∂θ − λ

sin θ
)d = ime−iβc,

−i(E +
α

r
)a+ ∂ra+

1

r
(∂θ +

λ

sin θ
)c = −imeiβd.
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In addition we have:

ρeiβ = det(φ) =
det(X)

r2 sin θ
=

ad∗ + cb∗

r2 sin θ
, (C.34)

so we get:

eiβ =
ad∗ + cb∗

|ad∗ + cb∗| . (C.35)

For the four Eq. (C.33) there are only two angular operators, so we let:

a = AU ; b = BV ; c = CV ; d = DU, (C.36)

where A, B, C and D are functions of r whilst U and V are functions of θ.
The system Eq. (C.33) becomes:

i(E +
α

r
)DU +D′U +

1

r
(V ′ +

λ

sin θ
V )B = ime−iβAU,

−i(E +
α

r
)CV − C′V +

1

r
(U ′ − λ

sin θ
U)A = −imeiβBV, (C.37)

i(E +
α

r
)BV −B′V +

1

r
(U ′ − λ

sin θ
U)D = ime−iβCV,

−i(E +
α

r
)AU +A′U +

1

r
(V ′ +

λ

sin θ
V )C = −imeiβDU.

So if a κ constant exists such as:

U ′ − λ

sin θ
U = −κV ; V ′ +

λ

sin θ
V = κU, (C.38)

the system Eq. (C.37) becomes:

i(E +
α

r
)D +D′ +

κ

r
B = ime−iβA,

−i(E +
α

r
)C − C′ − κ

r
A = −imeiβB, (C.39)

i(E +
α

r
)B −B′ − κ

r
D = ime−iβC,

−i(E +
α

r
)A+A′ +

κ

r
C = −imeiβD.

To get the system equivalent to the Dirac equation, from the same process,
it is enough to replace β by 0, this does not change the angular system
Eq. (C.38), while in the place of Eq. (C.39) we get the system:

i(E +
α

r
)D +D′ +

κ

r
B = imA,

−i(E +
α

r
)C − C ′ − κ

r
A = −imB, (C.40)

i(E +
α

r
)B −B′ − κ

r
D = imC,

−i(E +
α

r
)A+A′ +

κ

r
C = −imD.
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C.2 Angular momentum operators

We established in [9] the form that, in space-time algebra, the angular
momentum operators take. With the Pauli algebra, we have (a detailed
calculation is in [15] A.3):

J1φ = (d1 +
1

2
σ23)φσ21 ; d1 = x2∂3 − x3∂2 = − sinϕ ∂θ − cosϕ

tan θ
∂ϕ,

(C.41)

J2φ = (d2 +
1

2
σ31)φσ21 ; d2 = x3∂1 − x1∂3 = cosϕ ∂θ − sinϕ

tan θ
∂ϕ,

(C.42)

J3φ = (d3 +
1

2
σ12)φσ21 ; d3 = x1∂2 − x2∂1 = ∂ϕ. (C.43)

Of course we also have

J2 = J2
1 + J2

2 + J2
3 . (C.44)

We get then

J3φ = λφ⇐⇒ φ = φ(x0, r, θ)eλϕi3 . (C.45)

So the wave φ satisfying Eq. (C.8) is a proper vector of J3 and λ is the mag-
netic quantum number. Moreover, always for a φ wave satisfying Eq. (C.8),
we have:

J2φ = j(j + 1)φ, (C.46)

if and only if

∂2θθX + [(j +
1

2
)2 − λ2

sin2 θ
]X − λ

cos θ

sin2 θ
σ12Xσ12 = 0. (C.47)

But Eq. (C.38) implies at the second order

0 = U ′′ + (κ2 − λ2

sin2 θ
)U + λ

cos θ

sin2 θ
U, (C.48)

0 = V ′′ + (κ2 − λ2

sin2 θ
)V − λ

cos θ

sin2 θ
V, (C.49)

0 = ∂2θθX + (κ2 − λ2

sin2 θ
)X − λ

cos θ

sin2 θ
σ12Xσ12. (C.50)

Consequently φ is a proper vector of J2, with the proper value j(j + 1), if
and only if

κ2 = (j +
1

2
)2 ; |κ| = j +

1

2
; j = |κ| − 1

2
. (C.51)
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With Eq. (C.3) and Eq. (C.8) we can see that the change of ϕ into ϕ+ 2π

conserves the value of the wave if and only if λ has a half-odd value. General
results on angular momentum operators imply then:

j =
1

2
,
3

2
, · · · ; κ = ±1, ±2, · · · ; λ = −j, −j + 1, · · · j − 1, j. (C.52)

To solve the angular system, if λ > 0 we let, with C = C(θ):

U = sinλ θ[sin(
θ

2
)C ′ − (κ+

1

2
− λ) cos(

θ

2
)C],

V = sinλ θ[cos(
θ

2
)C ′ + (κ+

1

2
− λ) sin(

θ

2
)C].

(C.53)

If λ < 0 we let:

U = sin−λ θ[cos(
θ

2
)C ′ + (κ+

1

2
+ λ) sin(

θ

2
)C],

V = sin−λ θ[− sin(
θ

2
)C ′ + (κ+

1

2
+ λ) cos(

θ

2
)C].

(C.54)

The angular system Eq. (C.38) is then equivalent [7] to the differential
equation :

0 = C ′′ +
2|λ|
tan θ

C ′ + [(κ+
1

2
)2 − λ2]C. (C.55)

The change of variable:

z = cos θ ; f(z) = C[θ(z)], (C.56)

gives then the differential equation of the Gegenbauer’s 8 polynomials:

0 = f ′′(z)− 1 + 2|λ|
1− z2

zf ′(z) +
(κ+ 1

2 )
2 − λ2

1− z2
f(z). (C.57)

And we get, as only integrable solution:

C(θ)

C(0)
=

∞∑
n=0

(|λ| − κ− 1
2 )n(|λ|+ κ+ 1

2 )n

(12 + |λ|)nn!
sin2n(

θ

2
), (C.58)

with:

(a)0 = 1 , (a)n = a(a+ 1) . . . (a+ n− 1). (C.59)

8. When we solve the Dirac equation with Darwin’s method, that is to say with
the ad-hoc operators, we get Legendre’s polynomials and spherical harmonics. Here,
working with φ, that is to say with the Weyl spinors ξ and η, we get the Gegenbauer’s
polynomials, and it is the degree of the Gegenbauer’s polynomial which is the needed
quantum number.
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The C(0) factor is a factor of U and V ; its phase may be absorbed by the δ
in Eq. (C.8), and its amplitude may be transferred on the radial functions.
We can take therefore C(0) = 1. This gives:

C(θ) =

∞∑
n=0

(|λ| − κ− 1
2 )n(|λ|+ κ+ 1

2 )n

(12 + |λ|)nn!
sin2n(

θ

2
) . (C.60)

Since we have the conditions Eq. (C.52) on λ and κ, an integer n always
exists such as

|λ|+ n = |κ+
1

2
|, (C.61)

and this forces the series in Eq. (C.60) to be a finite sum, so U and V are
integrable. And since U and V have real values, we have:

eiβ =
AD∗U2 + CB∗V 2

|AD∗U2 + CB∗V 2| . (C.62)

C.3 Resolution of the linear radial system

We make the change of radial variable:

x = mr ; ε =
E

m
; a(x) = A(r) = A(

x

m
),

b(x) = B(r) ; c(x) = C(r) ; d(x) = D(r).
(C.63)

The radial system Eq. (C.40) becomes:

i(ε+
α

x
)d+ d′ +

κ

x
b = ia,

−i(ε+ α

x
)c− c′ − κ

x
a = −ib,

i(ε+
α

x
)b− b′ − κ

x
d = ic,

−i(ε+ α

x
)a+ a′ +

κ

x
c = −id.

(C.64)

Adding and subtracting, we get:

i(ε+
α

x
)(d− c) + (d− c)′ − κ

x
(a− b) = i(a− b),

−i(ε+ α

x
)(a− b) + (a− b)′ − κ

x
(d− c) = −i(d− c),

i(ε+
α

x
)(c+ d) + (c+ d)′ +

κ

x
(a+ b) = i(a+ b),

i(ε+
α

x
)(a+ b)− (a+ b)′ − κ

x
(c+ d) = i(c+ d).

(C.65)
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We let then:

a− b = F− + iG− ; a+ b = F+ + iG+,

d− c = F− − iG− ; c+ d = F+ − iG+,
(C.66)

and the radial system becomes:

i(ε+
α

x
)(F− − iG−) + (F− − iG−)′ − κ

x
(F− + iG−) = i(F− + iG−),

−i(ε+ α

x
)(F− + iG−) + (F− + iG−)′ − κ

x
(F− − iG−) = −i(F− − iG−),

i(ε+
α

x
)(F+ − iG+) + (F+ − iG+)

′ +
κ

x
(F+ + iG+) = i(F+ + iG+),

i(ε+
α

x
)(F+ + iG+)− (F+ + iG+)

′ − κ

x
(F+ − iG+) = i(F+ − iG+).

(C.67)

Adding and subtracting in equations Eq. (C.67), then dividing by i the
equations where i is a factor, we get the two separated systems:

(−1 + ε+
α

x
)F− −G′

− − κ

x
G− = 0,

(1 + ε+
α

x
)G− + F ′

− − κ

x
F− = 0.

(C.68)

(−1 + ε+
α

x
)F+ −G′

+ +
κ

x
G+ = 0,

(1 + ε+
α

x
)G+ + F ′

+ +
κ

x
F+ = 0.

(C.69)

These two systems are exchanged by replacing − indices by + indices and
vice versa, and by changing κ to −κ, so it is enough to study one of the
two systems. We let now:

F− =
√
1 + ε e−Λx(ϕ1 + ϕ2) ; Λ =

√
1− ε2,

G− =
√
1− ε e−Λx(ϕ1 − ϕ2).

(C.70)

Dividing the first of the two equations Eq. (C.68) by
√
1− ε e−Λx and the

second by
√
1 + ε e−Λx, we get:

−Λ(ϕ1 + ϕ2) +
α

x

√
1 + ε

1− ε
(ϕ1 + ϕ2) + Λ(ϕ1 − ϕ2)

− ϕ′
1 + ϕ′

2 −
κ

x
(ϕ1 − ϕ2) = 0,

Λ(ϕ1 − ϕ2) +
α

x

√
1− ε

1 + ε
(ϕ1 − ϕ2)− Λ(ϕ1 + ϕ2)

+ ϕ′
1 + ϕ′

2 −
κ

x
(ϕ1 + ϕ2) = 0.

(C.71)
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But we have: √
1 + ε

1− ε
=

1 + ε

Λ
;

√
1− ε

1 + ε
=

1− ε

Λ
, (C.72)

and we let:

c1 =
α

Λ
; c2 =

αε

Λ
. (C.73)

We get then, adding and subtracting the equations Eq. (C.71):

−2Λϕ2+
c1 − κ

x
ϕ1 +

c2
x
ϕ2 + ϕ′

2 = 0

c1 + κ

x
ϕ2 +

c2
x
ϕ1 − ϕ′

1 = 0.
(C.74)

We make then the change of variable:

z = 2Λx ; f1(z) = ϕ1(x) ; f2(z) = ϕ2(x). (C.75)

This puts the system in Eq. (C.74) on the form:

−f2+c1 − κ

z
f1 +

c2
z
f2 + f ′

2 = 0

c1 + κ

z
f2 +

c2
z
f1 − f ′

1 = 0.
(C.76)

We develop now in series:

f1(z) =
∞∑

m=0

amz
s+m ; f2(z) =

∞∑
m=0

bmz
s+m. (C.77)

The system Eq. (C.76) gives, for the coefficients of zs−1:

(c1 − κ)a0 + (c2 + s)b0 = 0,

(c2 − s)a0 + (c1 + κ)b0 = 0.
(C.78)

A non null solution exists only if the determinant of this system is null:

0 =

∣∣∣∣c1 − κ c2 + s

c2 − s c1 + κ

∣∣∣∣ = c21 − κ2 − c22 + s2. (C.79)

But we have, with Eq. (C.70) and Eq. (C.73):

c21 − c22 = α2. (C.80)

So we get:

0 = α2 + s2 − κ2 ; s2 = κ2 − α2. (C.81)

We must take:

s =
√
κ2 − α2, (C.82)
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to make the wave integrable at the origin. In this case the system Eq. (C.78)
is reduced to

b0 =
κ− c1
c2 + s

a0 =
s− c2
c1 + κ

a0. (C.83)

The system Eq. (C.76) gives, for the coefficients of zs+m−1, the system:

−bm−1+(c1 − κ)am + (c2 + s+m)bm = 0,

(c1 + κ)bm + (c2 − s−m)am = 0.
(C.84)

This last equation gives:

am =
c1 + κ

−c2 + s+m
bm, (C.85)

and the first one becomes:

− bm−1 + (c1 − κ)
c1 + κ

−c2 + s+m
bm + (c2 + s+m)bm = 0,

[(c1 − κ)(c1 + κ) + (s+m)2 − c22])bm = (−c2 + s+m)bm−1,

(C.86)

which, with Eq. (C.79), gives:

bm =
−c2 + s+m

(2s+m)m
bm−1 =

(−c2 + s+ 1)m
(2s+ 1)mm!

b0. (C.87)

And so we have:

f2(z) = b0z
s

∞∑
m=0

(−c2 + s+ 1)m
(2s+ 1)mm!

zm = b0z
sF (1+ s− c2, 2s+1, z) (C.88)

where F is the hypergeometric function. We have also:

bm =
−c2 + s+m

c1 + κ
am ; bm−1 =

−c2 + s+m− 1

c1 + κ
am−1. (C.89)

The first of the two equations Eq. (C.84) becomes:

−−c2 + s+m− 1

c1 + κ
am−1 + (c1 − κ)am + (c2 + s+m)

−c2 + s+m

c1 + κ
am = 0

(C.90)
which implies:

am =
−c2 + s− 1 +m

(2s+m)m
am−1 =

(−c2 + s)m
(2s+ 1)mm!

a0 (C.91)

And so we have:

f1(z) = a0z
s

∞∑
m=0

(−c2 + s)m
(2s+ 1)mm!

zm = a0z
sF (s− c2, 2s+ 1, z) (C.92)
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This hypergeometric function is integrable only 9 if the series is polynomial,
(up a coefficient, it is a Laguerre’s polynomial) with degree n, that is to
say if an integer n exists such that

−c2 + s+ n = 0 (C.93)

s+ n =
εα

Λ
, (C.94)

which gives, by taking the square:

(s+ n)2(1 − ε2) = ε2α2

(s+ n)2 = [(s+ n)2 + α2]ε2

ε2 =
1

1 +
α2

(s+ n)2

. (C.95)

And we get the Sommerfeld’s formula for the energy levels

ε =
1√

1 +
α2

(s+ n)2

; s =
√
κ2 − α2 ; |κ| = j +

1

2
. (C.96)

With Eq. (C.75), Eq. (C.83), Eq. (C.88) and Eq. (C.92), we get now:

ϕ1(x) = a0(2Λx)
sF (−n, 2s+ 1, 2Λx), (C.97)

ϕ2(x) =
−na0
c1 + κ

(2Λx)sF (1− n, 2s+ 1, 2Λx). (C.98)

We let, if n > 0:

P1 = F (1− n, 2s+ 1, 2Λx) ; P2 = F (−n, 2s+ 1, 2Λx). (C.99)

And we get:

F− =

√
1 + ε

c1 + κ
a0e

−Λx(2Λx)s[(c1 + κ)P2 − nP1], (C.100)

G− =

√
1− ε

c1 + κ
a0e

−Λx(2Λx)s[(c1 + κ)P2 + nP1]. (C.101)

We let then:

a1 =

√
1 + ε

c1 + κ
a0(2Λ)

s. (C.102)

9. The integrability of the wave functions is not optional, but compulsory, since we
have seen in Sec. 3.4 that the normalization of the wave comes from the physical fact
that the energy of the electron is the energy of its wave.
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We get finally:

F− = a1e
−Λxxs[(c1 + κ)P2 − nP1], (C.103)

G− =

√
1− ε

1 + ε
a1e

−Λxxs[(c1 + κ)P2 + nP1]. (C.104)

Since we go from F−, G− to F+, G+ by replacing κ by −κ, we have also:

F+ = a2e
−Λxxs[(c1 − κ)P2 − nP1], (C.105)

G+ =

√
1− ε

1 + ε
a2e

−Λxxs[(c1 − κ)P2 + nP1], (C.106)

where a2 is, as a1, a complex constant. We get the same condition on the
energy when we say that functions F+ and G+ must be polynomials to get
integrability of the wave, because Eq. (C.96) contains only κ2. Therefore
if the formula Eq. (C.96) is satisfied we get polynomials for the four radial
functions and the wave is integrable.

C.4 Calculation of the Yvon–Takabayasi angle

We have with Eq. (C.62) and Eq. (C.63):

eiβ =
ad∗U2 + cb∗V 2

|ad∗U2 + cb∗V 2| . (C.107)

With Eq. (C.66) we get:

2a = F+ + F− + i(G+ +G−) ; 2b = F+ − F− + i(G+ −G−),

2d = F+ + F− − i(G+ +G−) ; 2c = F+ − F− − i(G+ −G−). (C.108)

And we get:

4(ad∗U2 + cb∗V 2) =(F+F
∗
+ + F−F ∗

− −G+G
∗
+ −G−G∗

−)(U
2 + V 2)

+ (F+F
∗
− + F−F ∗

+ −G+G
∗
− −G−G∗

+)(U
2 − V 2)

+ i(F+G
∗
+ + F−G∗

− +G+F
∗
+ +G−F ∗

−)(U
2 − V 2)

+ i(F+G
∗
− + F−G∗

+ +G+F
∗
− +G−F ∗

+)(U
2 + V 2).

(C.109)

With Eq. (C.103) to Eq. (C.106), we get then, if n > 0:

F+F
∗
+ + F−F ∗

− −G+G
∗
+ −G−G∗

− (C.110)

=
2

1 + ε
e−2Λxx2s

(
(|a1|2 + |a2|2)[ε(c21 + κ2)P 2

2 + εn2P 2
1 − 2nc1P1P2]

+(|a2|2 − |a1|2)2κP2(−εc1P2 + nP1)

)
,
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F+F
∗
− + F−F ∗

+ −G+G
∗
− −G−G∗

+ (C.111)

= e−2Λxx2s(a1a
∗
2 + a2a

∗
1)

(
[(c1 − κ)P2 − nP1][(c1 + κ)P2 − nP1]

− 1−ε
1+ε ([(c1 − κ)P2 + nP1][(c1 + κ)P2 + nP1]

)
,

F+G
∗
+ + F−G∗

− +G+F
∗
+ +G−F ∗

− (C.112)

= 2

√
1− ε

1 + ε
e−2Λxx2s

( |a2|2[(c1 − κ)2P 2
2 − n2P 2

1 ]

+|a1|2[(c1 + κ)2P 2
2 − n2P 2

1 ]

)
,

F+G
∗
− + F−G∗

+ +G+F
∗
− +G−F ∗

+ (C.113)

= e−2Λxx2s(a1a
∗
2 + a2a

∗
1)

√
1− ε

1 + ε

(
[(c1 − κ)P2 − nP1][(c1 + κ)P2 + nP1]

+[(c1 + κ)P2 − nP1][(c1 − κ)P2 + nP1]

)
.

There is a great simplification, that we will let now, if:

a1a
∗
2 + a2a

∗
1 = 0. (C.114)

In addition, we have:

c2 = s+ n =
αε

Λ
; c1 =

α

Λ
=
s+ n

ε
=
√

(s+ n)2 + α2. (C.115)

We have: s � 0, n � 0, therefore (s+ n)2 � s2, and

c1 =
√
(s+ n)2 + α2 �

√
s2 + α2 =

√
κ2 = |κ| � ±κ. (C.116)

So we always have:

c1 − κ � 0 ; c1 + κ � 0. (C.117)

If we choose to let:

|a1|2 = (c1 − κ)k ; |a2|2 = (c1 + κ)k, (C.118)

where k is a real positive constant, we get:

F+F
∗
+ + F−F ∗

− −G+G
∗
+ −G−G∗

−

=
2k

1 + ε
e−2Λxx2s[2εc1(c

2
1 − κ2)P 2

2 + 2εc1n
2P 2

1 − 4n(c21 − κ2)P1P2],

(C.119)

and since:

c21 − κ2 = n(n+ 2s) ; εc1 = s+ n, (C.120)
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we get:
F+F

∗
+ + F−F ∗

− −G+G
∗
+ −G−G∗

−

=
4nk

1 + ε
e−2Λxx2s

(
(n+ 2s)[(s+ n)P 2

2 − 2nP1P2] + n(s+ n)P 2
1

)
=

4nk

1 + ε
e−2Λxx2s

[
(n+ 2s)(

√
s+ nP2 − n√

s+ n
P1)

2 +
ns2

s+ n
P 2
1

]
.

(C.121)
This term, which is the sum of two squares, is always positive, two successive
Laguerre’s polynomials having no common zero. Then we get

F+G
∗
+ + F−G∗

− +G+F
∗
+ +G−F ∗

−

=
2
√
1− ε2

1 + ε
e−2Λxx2s

( |a2|2[(c1 − κ)2P 2
2 − n2P 2

1 ]

+|a1|2[(c1 + κ)2P 2
2 − n2P 2

1 ]

)
=

4c1Λk

1 + ε
e−2Λxx2s[(c21 − κ2)P 2

2 − n2P 2
1 ]

=
4αnk

1 + ε
e−2Λxx2s[(n+ 2s)P 2

2 − nP 2
1 ]. (C.122)

This allows us to write the Yvon–Takabayasi angle as:

tanβ =
α[(2s+ n)P 2

2 − nP 2
1 ]

(n+ 2s)(
√
s+ nP2 − n√

s+n
P1)2 +

ns2

s+nP
2
1

× U2 − V 2

U2 + V 2
. (C.123)

The denominator contains only sums of squares, which cannot be both null.
Consequently, for all the states with a n > 0 quantum number, a solution
exists such that the Yvon–Takabayasi β angle is everywhere defined. In
addition the presence of the fine structure constant, which is small, implies
that the β angle is everywhere small. Moreover we now explain why U2−V 2

is exactly null, for any value of κ and λ, in the plane x1Ox2. We start here
from the differential equation Eq. (C.57). If f is a solution, then g defined by
g(z) = f(−z) is also a solution. Since there is only one polynomial solution
with degree n, up to a real factor, we get necessarily f(−z) = ±f(z) and f
is either an even polynomial or an odd polynomial. Therefore C is an even
or an odd polynomial of cos θ. Now from Eq. (C.53) we get

U2 + V 2 = sin2λ θ[C′2 + (κ+
1

2
− λ)2C2], (C.124)

U2−V 2=sin2λ θ[− cos θC′2−2(κ+
1

2
− λ) sin θC ′C+(κ+

1

2
− λ)2 cos θC2].

From Eq. (C.54)) we get

U2 + V 2 = sin−2λ θ[C′2 + (κ+
1

2
+ λ)2C2], (C.125)

U2−V 2=sin−2λ θ[cos θC′2+2(κ+
1

2
+ λ) sin θC ′C−(κ+

1

2
+ λ)2 cos θC2].
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This gives

(U2 − V 2)(
π

2
) = − λ

|λ| (κ+
1

2
− |λ|)(C ′C)(

π

2
). (C.126)

If C is a constant C′ = 0. Otherwise either C is an even polynomial of cos θ
and then C′ is odd and the product C′C contains a cos θ factor, or C is an
odd polynomial of cos θ and the product C′C contains also a cos θ factor.
This factor is null if θ = π

2 . This proves that

β(
π

2
) = 0. (C.127)

The solutions of the linear Dirac equation satisfying Eq. (C.114) and
Eq. (C.118) may therefore be the linear approximations of solutions for
the homogeneous nonlinear equation. Now if we have a solution φ0 of the
nonlinear homogeneous equation Eq. (3.1) with a not small value β0 of the
Yvon–Takabayasi angle at a point M0 with coordinates (x0, y0, 0), since
the nonlinear homogeneous equation is globally gauge invariant under the
chiral gauge Eq. (3.21), we let

φ = e−i
β0
2 φ0. (C.128)

And we get

(φφ)(M0) = e−i
β0
2 φ0e

−i
β0
2 φ0 = e−iβ0ρ0e

iβ0 = ρ0. (C.129)

And φ has at this point M0 a null β angle, so the equation Eq. (3.1) at
this point is exactly the Dirac equation, we get the separation of variables
at this point, we get the angular system Eq. (C.38) and the radial system
Eq. (C.39) which is identical to the radial system Eq. (C.40) of the linear
equation. Then the β angle is null in all the z = 0 plane and the radial
system Eq. (C.39) is identical to Eq. (C.40) in all the z = 0 plane. Then the
necessity of integrability imposes the existence of radial polynomials and
we get the quantification of the energy levels and the Sommerfeld’s formula
Eq. (C.96)

C.5 Radial polynomials with degree 0

To get absolutely all results of the Dirac equation, we have one last
thing to explain: how we get 2n2 different states with a principal quantum
number n = |κ|+n, and we must return to the particular case where radial
polynomials are constants. We start directly from Eq. (C.64), and we let:

a = a0e
−Λxxs ; b = b0e

−Λxxs ; c = c0e
−Λxxs ; d = d0e

−Λxxs. (C.130)
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We get from Eq. (C.39):

e−Λx(iεd0x
s + iαd0x

s−1 − Λd0x
s + sd0x

s−1 + κb0x
s−1) = ia0e

−Λxxs,

e−Λx(−iεc0xs − iαc0x
s−1 + Λc0x

s − sc0x
s−1 − κa0x

s−1) = −ib0e−Λxxs,

e−Λx(iεb0x
s + iαb0x

s−1 + Λb0x
s − sb0x

s−1 − κd0x
s−1) = ic0e

−Λxxs,

e−Λx(−iεa0xs − iαa0x
s−1 − Λa0x

s + sa0x
s−1 + κc0x

s−1) = −id0e−Λxxs.

(C.131)
This is equivalent to the set formed by the four following systems:

κb0 + (iα+ s)d0 = 0,

(iα− s)b0 − κd0 = 0,
(C.132)

−κa0 − (iα+ s)c0 = 0,

−(iα− s)a0 + κc0 = 0,
(C.133)

−ia0 + (iε− Λ)d0 = 0,

−(iε+ Λ)a0 + id0 = 0,
(C.134)

ib0 − (iε− Λ)c0 = 0,

(iε+ Λ)b0 − ic0 = 0.
(C.135)

The cancellation of the determinant in Eq. (C.132) and Eq. (C.133) gives
again Eq. (C.81) and Eq. (C.82). The cancellation of the determinant in
Eq. (C.134) and Eq. (C.135) is simply equivalent to Λ2 = 1 − ε2, which
comes from the definition of Λ. Each system Eq. (C.132) to Eq. (C.135) is
then reduced into one equation:

κd0 = (iα− s)b0,

κc0 = (iα− s)a0,

d0 = (ε− iΛ)a0,

b0 = (ε+ iΛ)c0.

(C.136)

We get then:

κd0 = κ(ε− iΛ)a0 = (iα− s)b0 = (iα− s)(ε+ iΛ)c0 =
(iα− s)2(ε+ iΛ)

κ
a0.

(C.137)
We have a non-null solution only if:

κ(ε− iΛ) =
(iα− s)2(ε+ iΛ)

κ

κ2(ε− iΛ)2 = (s− iα)2

κ(ε− iΛ) = ±(s− iα). (C.138)
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Since ε, s, Λ and α are positive, we finally get

|κ| = s

ε
=
α

Λ
. (C.139)

This last equality gives again the formula of energy levels Eq. (C.96) with
n = 0. Since κ comes with its absolute value, we can equally have κ < 0 or
κ > 0. But the calculation of solutions by C. G. Darwin, who works with
real constants, instead of complex constants at this stage of his computa-
tion, forbids κ to be negative, and it is that thing that allows, for a given
principal quantum number n = n + |κ|, to get n(n + 1) + n(n − 1) = 2n2

states. What really happens is that to change sign in κ also changes V into
−V . And if we change the sign of κ and V , then a, b, c, d are invariant if
n = 0, and the wave is unchanged. To change the sign of κ yields no more
solutions and we can use only solutions with κ > 0, in the case n = 0. And
this allows us to get the true number of states.

The formula obtained for the energy levels does not account for the
Lamb shift, which gives, if n > 0, a very small split between energy levels
with same other quantum numbers but with opposite signs of κ. If the
formula Eq. (C.96) was not the same for two opposite values of κ we should
not be able to get four polynomial radial functions with only one condition
which gives the quantification of the energy levels. Here also the standard
model has already an answer, with the polarization of the vacuum. But the
calculation must be revised, both to avoid divergent integrals and to use
our solutions instead of Darwin’s solutions coming from the non-relativistic
Pauli equation.
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